Great research starts with great data.

Learn More
More >
Patent Analysis of

Multilayer imaging with a high-gloss clear ink layer

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10000075

Application Number

US15/093678

Application Date

07 April 2016

Publication Date

19 June 2018

Current Assignee

ELECTRONICS FOR IMAGING, INC.

Original Assignee (Applicant)

ELECTRONICS FOR IMAGING, INC.

International Classification

B41J2/21,B41J11/00,B41M7/00

Cooperative Classification

B41J11/002,B41J2/2114,B41J11/0015,B41M7/0045,B41M7/0027

Inventor

KLEMANN, BRUCE,MCGRATH, JOSHUA,DUFFIELD, JOHN

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10000075 Multilayer imaging high-gloss 1 US10000075 Multilayer imaging high-gloss 2 US10000075 Multilayer imaging high-gloss 3
See all images <>

Abstract

Various embodiments concern inkjet printing systems designed for multilayer imaging with a high-gloss clear ink layer. More specifically, the inkjet printing systems are designed so that clear, curable inks are provided additional time to level out before being cured. The settling process enables the inkjet printing systems to produce multilayer images having high gloss values. For example, a bracket could be attached to a curing assembly that prevents radiation from striking a certain portion of the substrate onto which clear ink has recently been deposited. As another example, an inactive array of light-emitting diodes may be disposed in line with the print head(s) responsible for depositing clear ink. Moreover, various embodiments also allow for true multilayer printing of a color coat and a high-gloss clear coat in a single step (e.g., by arranging print heads into rows within a printer carriage).

Read more

Claims

1. A printing system comprising:a carriage that includes a first print head that deposits colored ink on a substrate, and a second print head that deposits clear ink on the substrate, wherein the second print head is disposed downstream of the first print head in a media feed direction;a light source that is configured to emit radiation to cure ink deposited on the substrate, wherein the light source is disposed along one side of the carriage; anda bracket that is statically affixed to opposing sidewalls of a housing of the light source such that the bracket covers a portion of the light source and prevents the radiation from reaching a section of the substrate onto which the clear ink has been deposited, wherein the bracket is positioned substantially in line with the second print head so that the clear ink deposited on the section of the substrate is not exposed to the radiation emitted by the light source for a particular amount of time during which the clear ink is allowed to settle, and wherein the particular amount of time is based on a width of the bracket.

2. The printing system of claim 1, wherein the colored ink and the clear ink are ultraviolet-curable inks.

3. The printing system of claim 1, wherein the colored ink is a water-based diluted ink or a solvent-based diluted ink that is at least partially cured by the light source immediately upon being deposited onto the substrate by the first print head.

4. The printing system of claim 1, wherein the clear ink comprises a photoinitiator adapted to absorb a range of wavelengths emitted by the light source.

5. The printing system of claim 4, wherein the light source is a mixed light source that includes a first plurality of light emitting diodes that are configured to emit the range of wavelengths and a second plurality of light emitting diodes that are configured to emit a different range of wavelengths.

6. The printing system of claim 5, wherein the range of wavelengths and the different range of wavelengths correspond to electromagnetic radiation of subtype A (UVA), subtype B (UVB), subtype C (UVC), or subtype V (UVV).

7. The printing system of claim 1, wherein the light source emits the radiation from a fluorescent bulb, a light-emitting diode, a low pressure bulb, a medium pressure bulb, an excimer lamp, or an excimer laser.

8. The printing system of claim 1, wherein the carriage is a reciprocating carriage that shuttles laterally across the substrate as a conveyor moves the substrate through the printing system in the media feed direction.

9. The printing system of claim 1, wherein the bracket is statically affixed to the opposing sidewalls of the housing of the light source using a magnet, a mechanical feature, an adhesive, a screw, nuts and bolts, or any combination thereof.

10. A method comprising: retaining a substrate on a conveyor that moves the substrate through an inkjet printing system; depositing colored ink on the substrate using a first print head to form a colored layer;curing at least some of the colored layer by exposing the colored ink to a first light source, wherein the first light source is configured to emit wavelengths of ultraviolet radiation; depositing clear ink on at least a portion of the colored layer using a second print head;allowing the clear ink to settle into a clear layer before initiating a curing process by retarding the conveyor immediately after the clear ink is deposited onto the substrate, wherein said retarding causes the clear ink to be disposed beneath an inactive light source or a bracket that prevents radiation from reaching the substrate; andcuring at least some of the clear layer by exposing the clear ink to a second light source, wherein the second light source is configured to emit wavelengths of ultraviolet radiation.

11. The method of claim 10, wherein the clear ink is allowed to settle for a particular amount of time before being exposed to the second light source.

12. The method of claim 11, wherein the particular amount of time is based on a width of a bracket that prevents radiation from reaching the substrate.

13. The method of claim 11, wherein the particular amount of time is based on a width of an inactive light source that is disposed between the first and second light sources and is inactive.

14. The method of claim 13, wherein the wavelengths of radiation of the first and second light sources comprise electromagnetic radiation of subtype A (UVA), subtype B (UVB), subtype C (UVC), or subtype V (UVV).

15. The method of claim 11, wherein the particular amount of time is based on composition of the clear ink, total surface area of the at least a portion of the colored layer onto which the clear ink is deposited, total amount of clear ink deposited onto the substrate, or some combination thereof.

16. The method of claim 10, further comprising: drying the colored ink and the clear ink using one or more heating assemblies disposed downstream of the first and second print heads in the media feed direction.

17. A printing system comprising: a conveyor that advances a substrate through the printing system in a media feed direction; a first print head that deposits colored ink on the substrate to form a colored layer;a first curing system that at least partially cures the colored layer, wherein the first curing system is disposed downstream of the first print head in the media feed direction;a second print head that deposits clear ink on the substrate to form a clear layer, wherein the second print head is disposed downstream of the first curing system in the media feed direction; anda second curing system that at least partially cures the clear layer, wherein the second curing system is offset from the second print head a predetermined distance in order to provide the clear ink time to settle before being exposed to the second curing system.

18. The printing system of claim 17, wherein the first print head is one of multiple print heads configured to deposit colored inks on the substrate.

19. The printing system of claim 17, wherein the first and second curing systems are configured to emit electromagnetic radiation of different wavelengths.

20. The printing system of claim 17, wherein the conveyor slows advancement of substrate in the media feed direction or stops entirely after the clear ink has been deposited onto the substrate in order to provide the clear ink time to settle.

Read more

Claim Tree

  • 1
    1. A printing system comprising:
    • a carriage that includes a first print head that deposits colored ink on a substrate, and a second print head that deposits clear ink on the substrate, wherein the second print head is disposed downstream of the first print head in a media feed direction
    • a light source that is configured to emit radiation to cure ink deposited on the substrate, wherein the light source is disposed along one side of the carriage
    • anda bracket that is statically affixed to opposing sidewalls of a housing of the light source such that the bracket covers a portion of the light source and prevents the radiation from reaching a section of the substrate onto which the clear ink has been deposited, wherein the bracket is positioned substantially in line with the second print head so that the clear ink deposited on the section of the substrate is not exposed to the radiation emitted by the light source for a particular amount of time during which the clear ink is allowed to settle, and wherein the particular amount of time is based on a width of the bracket.
    • 2. The printing system of claim 1, wherein
      • the colored ink and the clear ink are ultraviolet-curable inks.
    • 3. The printing system of claim 1, wherein
      • the colored ink is a water-based diluted ink or a solvent-based diluted ink that is at least partially cured by the light source immediately upon being deposited onto the substrate by the first print head.
    • 4. The printing system of claim 1, wherein
      • the clear ink comprises
    • 7. The printing system of claim 1, wherein
      • the light source emits the radiation from a fluorescent bulb, a light-emitting diode, a low pressure bulb, a medium pressure bulb, an excimer lamp, or an excimer laser.
    • 8. The printing system of claim 1, wherein
      • the carriage is a reciprocating carriage that shuttles laterally across the substrate as a conveyor moves the substrate through the printing system in the media feed direction.
    • 9. The printing system of claim 1, wherein
      • the bracket is statically affixed to the opposing sidewalls of the housing of the light source using a magnet, a mechanical feature, an adhesive, a screw, nuts and bolts, or any combination thereof.
  • 10
    10. A method comprising:
    • retaining a substrate on a conveyor that moves the substrate through an inkjet printing system
    • depositing colored ink on the substrate using a first print head to form a colored layer
    • curing at least some of the colored layer by exposing the colored ink to a first light source, wherein the first light source is configured to emit wavelengths of ultraviolet radiation
    • depositing clear ink on at least a portion of the colored layer using a second print head
    • allowing the clear ink to settle into a clear layer before initiating a curing process by retarding the conveyor immediately after the clear ink is deposited onto the substrate, wherein said retarding causes the clear ink to be disposed beneath an inactive light source or a bracket that prevents radiation from reaching the substrate
    • andcuring at least some of the clear layer by exposing the clear ink to a second light source, wherein the second light source is configured to emit wavelengths of ultraviolet radiation.
    • 11. The method of claim 10, wherein
      • the clear ink is allowed to settle for a particular amount of time before being exposed to the second light source.
    • 16. The method of claim 10, further comprising:
      • drying the colored ink and the clear ink using one or more heating assemblies disposed downstream of the first and second print heads in the media feed direction.
  • 17
    17. A printing system comprising:
    • a conveyor that advances a substrate through the printing system in a media feed direction
    • a first print head that deposits colored ink on the substrate to form a colored layer
    • a first curing system that at least partially cures the colored layer, wherein the first curing system is disposed downstream of the first print head in the media feed direction
    • a second print head that deposits clear ink on the substrate to form a clear layer, wherein the second print head is disposed downstream of the first curing system in the media feed direction
    • anda second curing system that at least partially cures the clear layer, wherein the second curing system is offset from the second print head a predetermined distance in order to provide the clear ink time to settle before being exposed to the second curing system.
    • 18. The printing system of claim 17, wherein
      • the first print head is one of multiple print heads configured to deposit colored inks on the substrate.
    • 19. The printing system of claim 17, wherein
      • the first and second curing systems are configured to emit electromagnetic radiation of different wavelengths.
    • 20. The printing system of claim 17, wherein
      • the conveyor slows advancement of substrate in the media feed direction or stops entirely after the clear ink has been deposited onto the substrate in order to provide the clear ink time to settle.
See all independent claims <>

Description

RELATED FIELD

Various embodiments relate generally to inkjet printing and curing. More particularly, various embodiments concern inkjet systems configured for multilayer imaging with a high-gloss clear ink layer.

BACKGROUND

Inkjet printing and energy-curable inks have experienced significant development over the last decade. In general, these developments have focused on more effective and efficient means to cure the ink after it has been deposited onto a substrate. The first energy-curable inkjet printing systems used medium pressure Mercury (vapor) bulbs. These bulbs were capable of producing a significant peak intensity (W/cm2) and doses of UV radiation (J/cm2) in a variety of wavelengths.

Several different approaches have been taken with respect to inkjet printing and radiation (e.g., ultraviolet) curing, including:

    • Initially printing a color layer on media, reversing the direction of the media, and then moving the media back to the start of the color layer. The print settings are then changed, and the color layer is overprinted with a layer of clear ink.
    • Initially printing a color layer on media, removing the media from the printing system, reinserting the media at the back of the printing system, and then overprinting the color layer with a layer of clear ink using different settings.
    • For flatbed printers, which are not suitable for printing on flexible media, either the rigid media or the print heads are fixed in place, and the un-fixed component (i.e., the media or the print heads) is moved on an X-Y table. These configurations allow printed areas of the media to be accessed again and a layer of clear ink to be overprinted on color layers.

In each of the foregoing approaches to inkjet printing, there is a need to give the clear, radiation-curable ink sufficient time to level out before it is cured so that the gloss can be maximized.

SUMMARY

Introduced herein are inkjet printing systems and techniques for improving the gloss of multilayer images printed on a substrate. These inkjet printing systems provide clear, curable inks additional time to settle and level out before being cured. Said another way, the inkjet printing systems described herein prevent clear ink from being immediately exposed to a curing assembly and instead selectively introduce the clear ink to the curing assembly after a certain amount of time (e.g., seconds or minutes after being deposited onto a substrate).

Various embodiments described herein allow for true multilayer printing of a color layer and a clear layer in a single step. For example, colored ink(s) could be deposited onto the substrate by a first row of print heads, and clear ink could be deposited onto the substrate by a second row of print heads. Clear ink is typically ejected on top of a color layer so that the clear layer can act as a protective overcoat (e.g., for outdoor weathering, abrasion resistance, or anti-graffiti), gloss flood coat or varnish, or spot gloss. However, clear ink could also be ejected directly onto the substrate (e.g., as a primer).

The clear ink is given time to settle before being exposed to a curing assembly. This can be accomplished by making structural adjustments to the inkjet printing system. For example, a bracket could be attached to the curing assembly that prevents radiation from striking a section of the substrate onto which clear ink has been deposited. As another example, a barrier could be erected immediately prior to the clear ink print head(s) that shields the recently-deposited clear ink from radiation.

The inkjet printing system may include a single curing assembly or multiple curing assemblies. For example, a first curing assembly could be configured to cure the color layer, while a second curing assembly could be configured to cure the clear layer. In some embodiments, the first and second curing assemblies are configured to emit different types of radiation. For example, the first curing assembly may be configured to emit electromagnetic radiation of subtype C (UVC), and the second curing assembly may be configured to emit electromagnetic radiation of subtype A (UVA), subtype B (UVB), subtype V (UVV), or a combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present disclosure are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements.

FIG. 1 depicts the feed direction of media (also referred to herein as a “substrate”) as it advances through an inkjet printing system.

FIG. 2 is a diagram of an inkjet printing system that is configured to deposit both colored ink and clear ink on a substrate.

FIG. 3 depicts the underside of an inkjet printing system that is able to cure ink deposited on a substrate using one or more curing assemblies.

FIG. 4 depicts the underside of an inkjet printing system that is able to cure ink deposited on a substrate using a segmented array of LEDs.

FIGS. 5A-C are bottom, side, and end views of a curing assembly that includes a shielding bracket, which blocks radiation in a particular area.

FIG. 6 is a table that shows a comparison of gloss values for different color blocks onto which a clear overcoat has been printed using various embodiments described herein and conventional printer setups.

FIG. 7 shows an inkjet printing system that includes fixed print heads for depositing color inks and clear ink and curing systems for curing the ink deposited on a substrate.

FIG. 8 depicts a process for curing a multilayer image that includes a layer of colored ink and a layer of clear ink.

FIG. 9 is a block diagram of a processing system that may be used to implement certain features of some of the embodiments described herein.

DETAILED DESCRIPTION

Systems and techniques for multilayer imaging with a high-gloss clear ink layer are described herein. For the purposes of illustration and ease of understanding, the term “layer” includes any type of coating or primer, unless the context specifically notes otherwise. These systems and techniques provide clear, curable (e.g., ultraviolet-curable) inks sufficient time to level out before being cured so that the gloss can be maximized.

Various embodiments allow for true multilayer printing of a color coat (e.g., a color image) and a high-gloss clear coat in a single step. That is, multilayer printing can be accomplished without moving the print media backward, removing and reinserting the print media into the printing system, or incorporating a second step. Various embodiments also allow multilayer prints to be executed on roll-to-roll inkjet printers and on hybrid inkjet printers that are capable of printing on both flexible roll-form print media and rigid print media (e.g., individual sheets).

The systems described herein allow clear coatings to flow out and level so that it can act as a primer, protective overcoat (e.g., for outdoor weathering, abrasion resistance, or anti-graffiti), gloss flood coat or varnish, or spot gloss.

The following description provides certain specific details for a thorough understanding and enabling description of these embodiments. One skilled in the relevant technology will understand, however, that some of the embodiments may be practiced without many of these details.

Likewise, one skilled in the relevant technology will also understand that some of the embodiments may include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below to avoid unnecessarily obscuring the relevant descriptions of the various examples.

The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the embodiments. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.

System Overview

FIG. 1 depicts the feed direction of media (also referred to herein as a “substrate”) as it advances through an inkjet printing system 100. The inkjet printing system 100 could be a conventional inkjet hybrid or roll-to-roll printer. An inkjet printing system 100 typically includes a printer carriage 102 that contains one or more print heads that deposit inks or other fluids onto the flexible or rigid substrate 104. FIG. 1 also depicts the path of a printer carriage 102 that shuttles laterally across the substrate 104. The path traversed by the printer carriage 102 as it shuttles laterally across the substrate 104 is normally substantially perpendicular to the media feed direction.

FIG. 2 is a diagram of an inkjet printing system 200 configured to deposit both colored ink and clear ink on a substrate 208. Many inkjet printing systems include at least one print head that applies a clear, curable ink or fluid to the substrate 208. Here, for example, the inkjet printing system 200 includes a printer carriage 202 that houses print heads 204 that eject clear ink and print heads 206 that eject colored ink. However, as noted above, conventional inkjet printing systems do not provide the clear ink sufficient time to settle and level out before being cured.

Some of the printing systems described herein position the print head(s) 204 that are responsible for depositing clear ink in a particular arrangement. For example, the print head(s) 204 may be in line with the print heads 206 responsible for ejecting colored ink, may be placed in front of or behind the other print heads 206 (e.g., in a separate row), or may be attached to the front or back of the printer carriage 202.

When the print heads 204, 206 in a printer carriage 202 are arranged in multiple rows, it is possible to print multiple layers on top of one another (i.e., produce a multilayer print) in a single pass of the substrate 208 through the printing system 200. For example, printing systems whose carriages shuttle back and forth laterally across a substrate may use a first row of print head(s) to print a color layer (e.g., an image or text) and a second row of print head(s) to print a clear layer. The clear layer may cover some or all of the color layer. For example, clear ink may only be deposited on a portion of a color image.

To achieve both high print quality for the color layer and high gloss of the clear layer in a multilayer construction, a section of a curing lamp 210 may be covered or disabled. More specifically, the colored ink can be deposited on a segment of substrate that is exposed to an active area of the curing lamp 210 immediately or very soon after printing. However, the curing lamp 210 may be blocked or turned off in an inactive area that passes over the clear ink. Eventually, as the substrate 208 advances through the printing system 200, the clear ink moves past the inactive area of the curing lamp 210 and reaches a position where the clear ink is exposed to sufficient radiation to initiate the curing process. The duration of time during which the clear ink is not exposed to radiation (also referred to as “time-to-lamp”) is sufficiently large to allow the individual droplets of clear ink to flow together and level out, which yields a higher gloss than would otherwise occur.

Time-to-lamp for the clear ink can also be increased incrementally by curing with a lamp that leads the print heads 204, 206 and the carriage 202 as it traverses the media 208 and by printing uni-directionally. Depending on the clear ink composition, the type of substrate, and the type of curing system, it may be necessary to allow the clear ink to flow out for tens of seconds or even minutes in order to maximize the gloss level of the clear layer.

Many different combinations of layers could be used for multilayer printing as long as the top layer comprises at least some clear ink. For example, the top layer could include patches of both clear ink and colored inks or only patches of clear ink, or could be a flood coat of clear ink. Several examples of possible combinations of layers are listed below. Note that some images may include four or more layers, even though many of the embodiments described herein may only include two or three layers:

    • Color-Clear
    • Color-Clear-Clear
    • Clear Primer-Color-Clear
    • Clear Primer-White-Color-Clear
    • White-Color-Clear
    • White-White-Color-Clear
    • White-Color-Clear-Clear
    • Black Block Out Layer On Transparent Media-Color-Clear
    • Black Block Out Layer On Transparent Media-White-Color-Clear
    • Color On Transparent Media-White-Color-Clear

FIG. 3 depicts the underside of an inkjet printing system 300 that is able to cure ink deposited on a substrate using one or more curing assemblies 308a-b. Colored inks are initially deposited on the substrate by one or more colored ink print heads 304, and at least partially cured by active sections of the curing assemblies 308a-b. The colored ink print head(s) 304 may be arranged in a row as shown in FIG. 3. The curing assemblies 308a-b, meanwhile, could be curing lamps that are disposed on opposite sides of the printer carriage 302.

When the color image advances into the dead zone delineated by dashed lines, clear ink can be deposited on top of the color image by one or more clear ink print heads 306. For example, the clear ink could be deposited by a second row of print head(s) or a subset of the print heads in the second row (e.g., only the outermost print heads on each end). In some embodiments, a portion of each curing assembly 308a-b is blocked (as shown by crosshatched areas 310a-b) so that the section of substrate between the dashed lines is not exposed to any radiation from the curing assemblies 308a-b.

Once that section of the substrate advances past the lower dashed line, the clear ink can be cured by radiation emitted by the curing assemblies 308a-b. In some embodiments, the inkjet printing system 300 is configured to transport the substrate at a particular speed so that the clear ink is provided sufficient time to settle before being exposed to the curing assemblies 308a-b. For example, a conveyor may advance the substrate at a particular speed while depositing ink on the substrate, and then decrease the speed of advancement (or halt advancement entirely) when the section of the substrate resides within the dead zone.

The colored ink(s) and the clear ink(s) deposited onto the substrate may be, for example, a solid curable ink, a water-based curable ink, or a solvent-based curable ink. The curing assemblies 308a-b could include fluorescent bulbs, light emitting diodes, low pressure bulbs, or exited dimer (excimer) lamps and/or lasers. For example, the curing assemblies 308a-b may be low-pressure mercury vapor lamps configured to emit UV radiation.

More specifically, the curing assemblies 308a-b may be configured to emit wavelengths of electromagnetic radiation subtype A (UVA), subtype B (UVB), subtype C (UVC), subtype V (UVV), or some combination thereof. UVV wavelengths generally measure between 395 nm and 445 nm. UVA wavelengths generally measure between 315 nanometers (nm) and 395 nm. UVB wavelengths generally measure between 280 nm and 315 nm. UVC wavelengths generally measure between 100 nm and 280 nm. However, one skilled in the art will recognize that these ranges may be somewhat adaptable/malleable. For instance, some embodiments may characterize wavelengths of 285 nm as UVC.

FIG. 4 depicts the underside of an inkjet printing system 400 that is able to cure ink deposited on a substrate using a segmented array of LEDs. The inkjet printing system 400 can include a printer carriage 402 that houses one or more colored ink print heads 404 and one or more clear ink print heads 406. In some embodiments, the colored ink print head(s) 404 and the clear ink print head(s) 406 are housed within separate printer carriages.

The colored ink print head(s) 404 can initially deposit colored ink on the substrate that is at least partially cured by the first LED array(s) 408a-b. The first LED array 408 could be disposed on one or both sides of the printer carriage 402. As the substrate moves through the inkjet printing system 400 and the color layer advances to the dead zone delineated by two dashed lines, clear ink can be deposited on the substrate by the clear ink print head(s) 406. Because the second LED array(s) 410a-b is inactive, the section of substrate that is disposed between the dashed lines is not exposed to any radiation (and thus is not cured). The lack of radiation provides the clear ink sufficient time to settle and level out so that the gloss can be maximized.

Once the section of substrate advances past the lower dashed line, both the colored layer and the clear layer can be cured by the third LED array(s) 412a-b. The end result is a multilayer image that includes at least a color layer (e.g., a colored image) that is disposed beneath a clear layer. The clear layer can cover some or all of the colored layer. For example, clear ink may only be deposited on particular segments of the colored layer as a spot gloss.

Each array of LEDs could be configured to emit radiation having a particular wavelength. For example, the first LED array(s) 408a-b may emit UVC wavelengths, while the third LED array(s) 412a-b may emit UVA wavelengths. In some embodiments, one or more of the LED arrays are mixed light sources that includes multiple light sources (e.g., fluorescent bulbs or light emitting diodes) that are configured to emit two different types of electromagnetic radiation.

FIGS. 5A-C are bottom, side, and end views of a curing assembly 500 that includes a shielding bracket 504, which blocks radiation in a particular area. More specifically, the shielding bracket 504 can be attached the housing 502 of the curing assembly 500 using one or more fasteners. The fasteners can include magnets, mechanical clips/tracks, or some kind of adhesive. Additionally or alternatively, the shielding bracket 504 and/or the housing 502 may include holes or indentations that are suitable for screws, nuts and bolts, etc.

Generally, the shielding bracket 504 need not be made of any particular material so long as the shielding bracket 504 is able to prevent radiation that is emitted by the curing assembly 500 from reaching ink that has been deposited on a substrate disposed beneath the curing assembly 500. But the shielding bracket 504 could be comprised of a metal or plastic that is readily cleanable and suffers limited degradation over time.

As shown in FIG. 3, the shielding bracket 504 can be attached to the housing 502 to create a dead zone where the substrate is left undisturbed. More specifically, the shielding bracket 504 ensures that only certain segments of the substrate are exposed to the radiation emitted by the curing assembly at a given point in time. The shielding bracket 504 could be disposed near the front, middle, or back of the curing assembly 500. The position of the shielding bracket 504 may be determined based on the position of the print head(s) responsible for depositing clear ink on the media.

FIG. 6 is a table that shows a comparison of gloss values for different color blocks onto which a clear overcoat has been printed using various embodiments described herein and conventional printer setups. Here, for example, the sets of color blocks were printed using a Vutek H2000 Pro with light smoothing, double shutters, medium cure, and standard speed. The gloss values illustrate the effectiveness of the systems and techniques described herein in achieving high gloss. More specifically, the gloss values illustrate the importance of providing clear ink sufficient time to settle before being cured.

FIG. 7 shows an inkjet printing system 700 that includes fixed print heads 702, 706 for depositing color inks and clear ink and curing systems 704, 708 for curing the ink deposited on a substrate 710. A conveyor 712 may be responsible for advancing the substrate 710 through the inkjet printing system 700. In some embodiments, drying systems are included instead or, or in addition to, the curing systems 704, 708.

The inkjet printing system 700 also includes a dead zone where no light or radiation (e.g., actinic UV radiation) is permitted to reach the substrate 710. The dead zone is typically created by making structural adjustments to the inkjet printing system 700. For example, a shielding bracket could be affixed to a curing system as shown by FIG. 6. As another example, a barrier could be erected the prevents radiation emitted by the curing system 704 for the color layer from passing a certain point.

The time that a section of the substrate 710 spends within the dead zone may be based on numerous factors. For example, the segment may travel through the dead zone slowly if a moderate amount of clear ink is deposited by the clear ink print head(s) 706, while the segment may stop in dead zone entirely if a large amount of clear ink is deposited by the clear ink print head(s) 706. The conveyor 712 may advance the substrate through the dead zone unimpeded if a small amount of clear ink (or no clear ink at all) was deposited on the segment by the clear ink print head(s) 706.

Numerous embodiments are also amenable to performing water-based drying in a similar fashion. That is, drying and/or heating could be performed rather than energy-based (e.g., UV) curing. In such embodiments, the curing assemblies may be replaced by heating assemblies 714 that include arc lamps, LEDs, infrared (IR) lamps, ceramic heaters, etc. Like the curing assemblies described above, the heating assemblies 714 can be blocked or removed entirely from an area adjacent to the clear ink print head(s) 706 so that the clear ink has sufficient time to settle.

FIG. 8 depicts a process 800 for curing a multilayer image that includes a layer of colored ink and a layer of clear ink. Printing instructions are initially received by an inkjet printing system from a source (step 801). The source may communicate printing instructions through a local physical connection (e.g., via a universal serial bus (USB) connection) and/or a remotely connection (e.g. via a local Wi-Fi network, Bluetooth peer to peer connection, or an Internet service provider (ISP) coupled to the local Wi-Fi network via a router).

The inkjet printing system then begins the printing process by depositing colored ink on a substrate to form a color layer in accordance with the printing instructions (step 802). The color layer is then at least partially cured by being exposed to a first curing assembling (step 803). The first curing assembly could include, for example, LEDs configured to emit UV radiation at a particular wavelength that is based at least in part on the composition of the colored ink, The color layer could be partially or entirely cured by the curing assembly during this step.

The inkjet printing system then deposits clear ink on at least a portion of the color layer to form a clear layer (step 804). The clear layer can act as a protective overcoat (e.g., for outdoor weathering, abrasion resistance, or anti-graffiti), a gloss flood coat or varnish, or a spot gloss. The inkjet printing system is designed so that the clear ink has sufficient time to settle before being cured (step 805). This can be done in multiple ways. For example, a shielding bracket could be affixed to the curing assembly that prevents radiation from reaching the substrate. As another example, sufficient space may exist between the first curing assembly and the clear ink print head(s) such that radiation does not affect clear ink deposited onto the substrate.

The clear layer is then at least partially cured by a second curing assembly (step 806). In some embodiments, the first and second curing assemblies are part of the same curing assembly. For example, a shielding bracket may separate a single curing assembly into multiple segments that emit radiation. However, the first and second curing assemblies could instead be distinct curing assemblies. In such embodiments, the distinct curing assemblies could be configured to emit the same or different types of radiation.

Unless contrary to physical possibility, it is envisioned that the steps described above may be performed in various sequences and combinations. Additional steps could also be included in some embodiments. For example, a clear layer could be initially deposited by the clear ink print head(s) onto the substrate as a clear primer that is disposed beneath the color layer. Those skilled in the art will also appreciate that the steps described here could be altered in a variety of ways. For instance, the order of the steps may be rearranged, sub-steps may be performed in parallel, some illustrated steps may be omitted, other steps may be included, etc. Moreover, certain steps may be consolidated into a single step and the actions represented by a single step may be alternatively represented as a collection of sub-steps.

Chemistry of Clear Inks

The clear, radiation-curable inks described above preferably comprise the following components at the certain composition levels, which are listed below:

    • Radiation-curable Oligomers: 0-30%
    • Radiation-curable Monomers: 40-90%
    • Photoinitiators: 1-10%
    • Light stabilizers and UV absorbers: 0-8%
    • Flow and Leveling Additives: 0-3%
    • Surfactants for Surface Energy Control: 0-2%
    • Antioxidants, Thermal Stabilizers, and Polymerization Inhibitors: 0-3%
    • Biocides: 0-3%
    • Nanoparticles for Surface Hardness: 0-5%

Note, however, that various types of clear, energy (e.g., radiation or convection) curable inks could include some or all of these components, as well as additional components not described here.

Processing System

FIG. 9 is a block diagram of a processing system 900 that may be used to implement certain features of some of the embodiments described herein. The processing system 900 may include or be part of a server, a personal computer, a tablet, a personal digital assistant (PDA), a mobile phone, a network-connected (“smart”) device, or another electronic device capable of providing instructions to a printing system.

The processing system 900 may include one or more central processing units (“processors”) 902, memory 904, a communication device 906, and an input/output device 908 (e.g., keyboards, pointing devices, and touch-sensitive displays) that are connected to an interconnect 910.

The interconnect 910 is illustrated as an abstraction that represents any one or more separate physical buses, point-to-point connections, or both connected by appropriate bridges, adapters, or controllers. The interconnect 910, therefore, may include, for example a system bus, a peripheral component interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (12C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also referred to as “Firewire.”

The memory 904 is computer-readable storage media that may store instructions that implement at least portions of the various embodiments. In addition, the data structures and message structures may be stored or transmitted via a data transmission medium (e.g., a signal on a communications link). Various communications links may be used, such as the Internet, a local area network, a wide area network, or a point-to-point dial-up connection. Thus, computer readable media can include computer-readable storage media (e.g., non-transitory media) and computer-readable transmission media.

The instructions stored in memory 904 can be implemented as software and/or firmware to program one or more processors 902 to carry out the actions described above. In some embodiments, such software or firmware may be initially provided to the processor 902 by downloading it from a remote system through the communication device 906, such as an Ethernet adapter, cable modem, Wi-Fi adapter, cellular transceiver, or Bluetooth transceiver.

The various embodiments of the invention introduced herein can be implemented by, for example, programmable circuitry (e.g., one or more microprocessors), programmed with software and/or firmware, entirely in special-purpose hardwired (i.e., non-programmable, circuitry), or in a combination of such forms. Special-purpose hardwired circuitry may be in the form of, for example, one or more ASICs, PLDs, FPGAs, etc.

Remarks

The above description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known details are not described in order to avoid obscuring the description. Further, various modifications may be made without deviating from the scope of the embodiments.

Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described that may be exhibited by some embodiments and not by others. Similarly, various requirements are described that may be requirements for some embodiments but not for others.

The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed above, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that the same thing can be said in more than one way. For instance, one will recognize that “memory” is one form of a “storage” and that the terms may on occasion be used interchangeably.

Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, and special significance is not to be placed on whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any term discussed herein, is illustrative only and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to the various embodiments given in this specification.

Without intent to further limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given above. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

21.34/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

50.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

72.31/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

58.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

17.78/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Smooth finish UV ink system and method ELECTRONICS FOR IMAGING, INC. 08 October 2004 13 April 2006
Method and apparatus for inkjet printing using UV radiation curable ink 3M INNOVATIVE PROPERTIES COMPANY 15 November 2001 05 September 2002
Printing system for application of a patterned clear layer for reducing gloss banding ELECTRONICS FOR IMAGING, INC. 22 November 2011 23 May 2013
Printing system for application of a patterned clear layer for reducing gloss banding ELECTRONICS FOR IMAGING, INC. 22 November 2011 16 September 2014
Apparatus and methods for full-width wide format inkjet printing ELECTRONICS FOR IMAGING, INC. 18 June 2007 26 December 2007
See full citation <>

More like this

Title Current Assignee Application Date Publication Date
Inkjet ink HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. 20 July 2016 25 January 2018
Radiation-curable inkjet ink composition OCE HOLDING B.V. 21 February 2017 31 August 2017
Waterbased UV inkjet ink containing synthetic thickener SUN CHEMICAL CORPORATION 16 September 2016 30 March 2017
UV curable inkjet inks AGFA GRAPHICS NV 11 October 2016 20 April 2017
Inkjet printers HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. 03 December 2015 08 June 2017
Manufacturing printed circuit boards using UV free radical curable inkjet inks AGFA-GEVAERT 05 July 2016 19 January 2017
Method of inkjet printing a colorless ink EASTMAN KODAK COMPANY 04 August 2017 22 February 2018
UV curable inkjet inks AGFA GRAPHICS NV 10 October 2016 20 April 2017
Adjustable gloss level for compact printhead arrangement NIKE INNOVATE C.V.,MILLER, TODD, W. 07 October 2016 04 May 2017
Inkjet ink and image forming method KONICA MINOLTA, INC. 28 February 2017 28 September 2017
Manufacturing of decorative panels by inkjet AGFA GRAPHICS NV,UNILIN BVBA 11 May 2016 01 December 2016
Photocurable ink composition for inkjet printing SAKATA INX CORPORATION 26 December 2016 10 August 2017
溶剤ベースインク組成物を使用するインクジェット印刷 ゼニア·テクノロジー·リミテッド 14 December 2007 30 April 2010
Radiation-curable inkjet ink for application to glass, ceramic, or metal ELECTRONICS FOR IMAGING, INC. 19 October 2016 27 April 2017
Ink composition for inkjet print steel plate, inkjet print steel plate using same, and method for producing inkjet print steel plate POSCO 12 August 2016 23 February 2017
Inkjet printing method, inkjet ink, ink cartridge, and colored fabric FUJIFILM CORPORATION 26 January 2017 03 August 2017
Inkjet recording method using colored ink KONICA MINOLTA, INC. 29 June 2016 26 January 2017
Method of printing FUJIFILM SPECIALITY INK SYSTEMS LIMITED 13 May 2016 17 November 2016
White ink composition for photocurable inkjet printing SAKATA INX CORPORATION 15 December 2015 01 September 2016
UV curable inkjet ink compositions ELECTRONICS FOR IMAGING, INC. 17 August 2016 23 February 2017
See all similar patents <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10000075 Multilayer imaging high-gloss 1 US10000075 Multilayer imaging high-gloss 2 US10000075 Multilayer imaging high-gloss 3