Great research starts with great data.

Learn More
More >
Patent Analysis of

Carbon-enhanced cement clinker

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10000413

Application Number

US14/971757

Application Date

16 December 2015

Publication Date

19 June 2018

Current Assignee

THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Original Assignee (Applicant)

THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

International Classification

C04B22/00

Cooperative Classification

C04B22/00,C04B7/48,C04B14/022,C04B14/026,C04B22/02

Inventor

ABNEY, MORGAN BARRERA,ALLEMAN, JAMES E.

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10000413 Carbon-enhanced cement clinker 1 US10000413 Carbon-enhanced cement clinker 2
See all images <>

Abstract

A clinker for use in cement manufacturing includes a cement clinker mixture having crystals of an element that is less electronegative than carbon and carbon bonded to at least a portion of the crystals.

Read more

Claims

1. A clinker product, comprising: a cement clinker mixture to include iron crystals; and carbon bonded to at least a portion of said iron crystals.

2. A clinker product as in claim 1, wherein said clinker mixture comprises particles thereof not to exceed approximately 1 millimeter in diameter.

3. A clinker product as in claim 1, further comprising additional carbon bonded to said carbon bonded to at least a portion of said iron crystals.

4. A clinker product as in claim 1, wherein said carbon is covalently bonded to said iron crystals.

5. A clinker product as in claim 1, wherein said carbon includes allotropes of carbon.

6. A clinker product as in claim 3, wherein said additional carbon includes allotropes of carbon.

7. A clinker product, comprising: a cement clinker mixture to include crystals of an element that is less electronegative than carbon; and carbon bonded to at least a portion of said crystals.

8. A clinker product as in claim 7, wherein said clinker mixture comprises particles thereof not to exceed approximately 1 millimeter in diameter.

9. A clinker product as in claim 7, further comprising additional carbon bonded to said carbon bonded to at least a portion of said crystals.

10. A clinker product as in claim 7, wherein said carbon is covalently bonded to said crystals.

11. A clinker product as in claim 7, wherein said carbon includes allotropes of carbon.

12. A clinker product as in claim 9, wherein said additional carbon includes allotropes of carbon.

13. A clinker product, comprising: a cement clinker mixture defined by particles thereof having a diameter not to exceed approximately 1 millimeter, said clinker mixture including iron crystals; carbon bonded to at least a portion of said iron crystals; and additional carbon bonded to said carbon bonded to at least a portion of said iron crystals.

14. A clinker product as in claim 13, wherein said carbon is covalently bonded to said iron crystals.

15. A clinker product as in claim 13, wherein said carbon and said additional carbon include allotropes of carbon.

Read more

Claim Tree

  • 1
    1. A clinker product, comprising:
    • a cement clinker mixture to include iron crystals
    • and carbon bonded to at least a portion of said iron crystals.
    • 2. A clinker product as in claim 1, wherein
      • said clinker mixture comprises
    • 3. A clinker product as in claim 1, further comprising
      • additional carbon bonded to said carbon bonded to at least a portion of said iron crystals.
    • 4. A clinker product as in claim 1, wherein
      • said carbon is covalently bonded to said iron crystals.
    • 5. A clinker product as in claim 1, wherein
      • said carbon includes allotropes of carbon.
  • 7
    7. A clinker product, comprising:
    • a cement clinker mixture to include crystals of an element that is less electronegative than carbon
    • and carbon bonded to at least a portion of said crystals.
    • 8. A clinker product as in claim 7, wherein
      • said clinker mixture comprises
    • 9. A clinker product as in claim 7, further comprising
      • additional carbon bonded to said carbon bonded to at least a portion of said crystals.
    • 10. A clinker product as in claim 7, wherein
      • said carbon is covalently bonded to said crystals.
    • 11. A clinker product as in claim 7, wherein
      • said carbon includes allotropes of carbon.
  • 13
    13. A clinker product, comprising:
    • a cement clinker mixture defined by particles thereof having a diameter not to exceed approximately 1 millimeter, said clinker mixture including iron crystals
    • carbon bonded to at least a portion of said iron crystals
    • and additional carbon bonded to said carbon bonded to at least a portion of said iron crystals.
    • 14. A clinker product as in claim 13, wherein
      • said carbon is covalently bonded to said iron crystals.
    • 15. A clinker product as in claim 13, wherein
      • said carbon and said additional carbon include allotropes of carbon.
See all independent claims <>

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to cement clinkers. More specifically, the invention is a clinker product that has been enhanced with carbon to improve the properties of concrete manufactured using cement that includes the clinker product.

2. Description of the Related Art

Over time, the leaching of ions (e.g., chlorine ions) into concrete structures corrodes and weakens metal supports that are typically found in concrete structures. Corrosion of the metal support shortens the useful life of the structure. Since chlorine ions are prevalent in a variety of sources, most concrete structures are subject to chlorine-leaching-based damage.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to increase the useful life of metal-reinforced concrete structures by reducing ion leaching into concrete.

Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.

In accordance with the present invention, a clinker for use in cement manufacturing includes a cement clinker mixture. The cement clinker mixture includes crystals of an element that is less electronegative than carbon (e.g., iron, cobalt, nickel, etc.) and carbon bonded to at least a portion of the crystals.

BRIEF DESCRIPTION OF THE DRAWING(S)

Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:

FIG. 1 is a flow diagram illustrating the process for producing a clinker product in accordance with the present invention;

FIG. 2 is a simplified process flow diagram of a single-reactor Bosch system that can be used in the production of the clinker product; and

FIG. 3 is a simplified process flow diagram of a dual-reactor Bosch system that can be used in the production of the clinker product.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring now to the drawings and more particularly to FIG. 1, a flow diagram is illustrated of a process used to produce a novel clinker product in accordance with the present invention. The clinker product can then be used in cement manufacturing. As will be explained further below, concrete that includes cement manufactured to include the novel clinker product described herein exhibits a slower rate of ion leaching as compared to conventional concrete.

In accordance with the present invention, a Bosch reaction 10 is supplied with hydrogen 12 and carbon dioxide 14. As is known in the art, Bosch reactions generate a chemical reaction between hydrogen and carbon dioxide that produces carbon, water, and heat. For a description of Bosch reactions, see (for example) Abney et al., “The Bosch Process—Performance of Developmental Reactor and Experimental Evaluation of Alternative Catalysts,” 40th International Conference of Environmental Systems, AIAA 2010-6272, 2010. In the present invention, Bosch reaction 10 is also supplied with a cement clinker mixture 16 that could be ground, supplied directly from the furnace of a cement plant, etc., without departing from the scope of the present invention. In general, cement clinker mixture 16 is any of a variety of clinker formulations that can be used in the manufacturing of cement. For purpose of the present invention, cement clinker mixture 16 must include crystals of an element that is less electronegative than carbon. For example, such elements include iron, nickel, and cobalt, with iron being generally found in most cement clinkers.

Cement clinker mixture 16 is provided to Bosch reaction 10 in a ground form. While the particle sizes of cement clinker mixture 16 are not a limitation of the present invention, more of the electronegative crystal elements are exposed for mixtures 16 comprised of smaller particles. Accordingly, mixture 16 can be ground into small particles thereof (e.g., on the order of approximately one millimeter) for applications seeking to maximize exposure of the electronegative crystal elements.

As mentioned above, Bosch reaction 10 produces carbon, water, and heat when supplied with hydrogen and carbon dioxide. The reaction within Bosch reactor 10 can be accelerated in the presence of an iron, nickel, or cobalt catalyst. Thus, the presence of one or more of iron, nickel, or cobalt crystals in clinker mixture 16 serves to accelerate the known Bosch reaction. In addition, it has been found that the carbon generated during the Bosch reaction bonds to at least a portion of the electronegative element crystals. The carbon generated during the Bosch reaction process can take the form of elemental carbon as well as allotropes of carbon (e.g., graphite, graphene, amorphous carbon, carbon fibers, carbon nanotubes, etc.). Accordingly, the word “bond” as used herein as it relates to the relationship between the generated carbon and the electronegative element crystals includes covalent bonding, ionic bonding, encasement or capture of the crystals by carbon allotropes, etc. The dispersion of carbon in the clinker matrix can be controlled by the particle size of clinker mixture 16. Ion leaching is reduced in concrete made from cement that includes the clinker product of the present invention. In general, ion leaching decreases with increased amounts of carbon as the carbon “blocks” (e.g., attracts, bonds, and/or traps) the ions as they migrate through the concrete.

It has further been found that the carbon produced in Bosch reaction 10 can also bond to the carbon that bonds to the electronegative element crystals. These carbon-to-carbon bonds can occur via a variety of mechanisms depending on the types of carbon as would be understood in the art. This additional carbon can add to the weight percent in the present invention's clinker product ultimately output from Bosch reaction 10. The additional carbon further improves ion blocking in a concrete material/structure made from cement that includes the carbon-enhanced clinker product.

Depending on how the clinker product (output from Bosch reaction 10) is to be used, it may be necessary to grind the clinker product. In such cases, a grinder 18 can be provided. Grinder 18 can also be supplied with additives (e.g., gypsum or other ingredients used in cement manufacturing).

Bosch reaction 10 can be realized by a variety reactor systems. By way of non-limiting examples, a single reactor system and a dual reactor system will be described briefly herein. More specifically, FIG. 2 illustrates a single reactor system where a single reactor 102 generates gas products sent through a condensing heat exchanger 104 to remove bulk water prior to being recycled back to reactor 102. FIG. 3 illustrates a dual reactor system having a first reactor 102, a condensing heat exchanger 104, and a second reactor 106. In the dual reactor system, the gas products generated at reactor 102 are processed by heat exchanger 104 and reactor 106 before being recycled back to reactor 102 and/or heat exchanger 104.

The above-described process can be a stand-alone process that produces the clinker product, or can be readily incorporated into an existing cement manufacturing facility. In the latter case, the carbon dioxide could be extracted from the smoke-stack gases generated by a cement manufacturing facility. That is, the smoke-stack gases could be passed through a carbon dioxide extractor/concentrator to provide carbon dioxide 14 for Bosch reactor 10.

The advantages of the present invention are numerous. The clinker product generated by the above-described process has carbon bonded to the cement clinker mixture's electronegative element crystals. The amount of carbon in the carbon-enhanced clinker product can vary depending on the length of time that the clinker mixture is maintained in the Bosch reaction. As mentioned above, the amount of carbon in the carbon-enhanced clinker product directly impacts reduction in ion leaching into concrete materials/structures made from cement that includes the carbon-enhanced clinker product. In general, the ions' affinity for the carbon blocks ion migration through the concrete thereby preventing corrosive activity generally associated with the presence of ions. In addition, the presence of carbon in the concrete could provide electrical conductivity for ancillary applications.

Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

24.0/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

22.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

75.0/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

35.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

14.0/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Radiation shielding composition comprising carbon and lead dispersed in cement CHEMTREE CORPORATION 19 April 1962 21 September 1965
Method and systems for forming carbon nanotubes EXXONMOBIL UPSTREAM RESEARCH COMPANY,SOLID CARBON PRODUCTS, LLC 12 December 2012 27 November 2014
一种氯盐负碳水泥砖及其制备方法 苏州负碳谷材料科技有限公司 11 September 2013 05 February 2014
Carbon dioxide sequestration process for cement manufactoring facilities C-QUEST TECHNOLOGIES INTERNATIONAL LLC 08 March 2007 20 August 2014
Carbon fiber reinforced cement concrete composites improved by using chemical agents CHUNG; DEBORAH D. L. 15 May 1989 16 July 1991
See full citation <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10000413 Carbon-enhanced cement clinker 1 US10000413 Carbon-enhanced cement clinker 2