Great research starts with great data.

Learn More
More >
Patent Analysis of

Process for production of insulin and insulin analogues

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10000544

Application Number

US14/908854

Application Date

31 July 2014

Publication Date

19 June 2018

Current Assignee

BIOGENOMICS LIMITED

Original Assignee (Applicant)

BIOGENOMICS LIMITED

International Classification

C12P21/04,C12P21/02,C12N15/70,C12N15/74,C07K14/62

Cooperative Classification

C07K14/62,C12N15/70,C12N15/74,C12P21/02

Inventor

KRISHNAN, ARCHANA,SONAR, SANJAY,THAPPA, DAMODAR

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10000544 Process production insulin 1 US10000544 Process production insulin 2 US10000544 Process production insulin 3
See all images <>

Abstract

A process for production of insulin or insulin analogs by expression of Insulin or Insulin analogs through an expression vector in a host cell is provided. The expression vector includes a leader peptide of SEQ ID NO 3; a nucleotide sequence encoding an affinity tag linked to C-terminal end or N terminal end of nucleotide sequence of the leader peptide; and a nucleotide sequence encoding for a cleavage site ligated to nucleotide sequence of the leader peptide through nucleotide sequence encoding the affinity tag.

Read more

Claims

1. A process for production of an insulin or insulin analogue, the process comprising expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises: a first nucleotide sequence encoding a leader peptide of SEQ ID NO:3; a second nucleotide sequence encoding an affinity tag, wherein the affinity tag is expressed linked to a C-terminal end or N-terminal end of said leader peptide; and a third nucleotide sequence encoding a cleavage site, wherein the third nucleotide sequence is ligated to the first nucleotide sequence encoding said leader peptide or to the second nucleotide sequence encoding said affinity tag.

2. The process of claim 1, wherein said leader peptide is expressed as a fusion protein; said fusion protein comprising fusion of said leader peptide of SEQ ID NO:3 and the insulin or inulin analogue.

3. The process of claim 1, wherein said bacteria are E. coli.

4. The process of claim 1, wherein said leader peptide has Methionine at N-terminus, followed by glycine.

5. The process of claim 1, wherein said affinity tag is his-tag.

6. The process of claim 1, wherein said cleavage site is arginine.

7. The process of claim 1, wherein said expression vector further comprises a multiple cloning site (MCS) in upstream region of said first nucleotide sequence encoding said leader peptide; a fourth nucleotide sequence encoding a ribosome binding site (RBS); a promoter or operator sequence downstream of the fourth nucleotide sequence encoding said ribosome binding site; and a fifth nucleotide sequence encoding an antibiotic selection marker in upstream region of said promoter or operator sequence.

8. The process of claim 7, wherein said antibiotic selection marker is kanamycin.

9. The process of claim 6, wherein the insulin or insulin analogue is expressed as a compound of formula: A-L-Arg-B-A-C, L-A-Arg-B-A-C, L-A-Arg-A-C-B or A-L-Arg-A-C-B; wherein A is said affinity tag, L is said leader peptide of SEQ ID NO 3, Arg is arginine, B is B-chain of Proinsulin or Proinsulin analogue, A is A-chain of Proinsulin or Proinsulin Analogue, C is C-chain of Proinsulin or Proinsulin Analogue.

10. The process of claim 9 further comprising digesting said compound with Trypsin to cleave off said leader peptide with affinity tag and C-chain of proinsulin to obtain molecule of insulin or insulin analogues having B-chain and A-Chain.

11. The process of claim 1, wherein said expression vector comprises nucleotide sequence of SEQ ID NO 1.

12. A process for production of a insulin or insulin analogue, the process comprising expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises: a first nucleotide sequence encoding a leader peptide of SEQ ID NO:3; a second nucleotide sequence encoding an affinity tag, wherein the affinity tag is expressed linked to a C-terminal end or a N-terminal end of said leader peptide; a third nucleotide sequence, wherein the third nucleotide sequence encodes a cleavage site or is a Restriction Enzyme (RE) site, and wherein the third nucleotide sequence is ligated to the first nucleotide sequence of encoding said leader peptide or to the second nucleotide sequence encoding said affinity tag; a multiple cloning site (MCS) in upstream region of the first nucleotide sequence encoding said leader peptide; a fourth nucleotide sequence encoding a ribosome binding site (RBS); a promoter or operator sequence downstream of the fourth nucleotide sequence encoding said ribosome binding site (RBS); and a fifth nucleotide sequence encoding an antibiotic selection marker, wherein the fifth nucleotide sequence is upstream of said promotor or operator sequence.

13. The process of claim 12, wherein said affinity tag is his-tag.

14. The process of claim 12, wherein said cleavage site is arginine.

15. A process for production of an insulin or insulin analogue, the process comprising expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises SEQ ID NO: 1.

16. The process of claim 15, wherein the bacteria are E. coli.

Read more

Claim Tree

  • 1
    1. A process for production of an insulin or insulin analogue, the process comprising
    • expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises: a first nucleotide sequence encoding a leader peptide of SEQ ID NO:3
    • a second nucleotide sequence encoding an affinity tag, wherein the affinity tag is expressed linked to a C-terminal end or N-terminal end of said leader peptide
    • and a third nucleotide sequence encoding a cleavage site, wherein the third nucleotide sequence is ligated to the first nucleotide sequence encoding said leader peptide or to the second nucleotide sequence encoding said affinity tag.
    • 2. The process of claim 1, wherein
      • said leader peptide is expressed as a fusion protein; said fusion protein comprising
    • 3. The process of claim 1, wherein
      • said bacteria are E. coli.
    • 4. The process of claim 1, wherein
      • said leader peptide has Methionine at N-terminus, followed by glycine.
    • 5. The process of claim 1, wherein
      • said affinity tag is his-tag.
    • 6. The process of claim 1, wherein
      • said cleavage site is arginine.
    • 7. The process of claim 1, wherein
      • said expression vector further comprises
    • 11. The process of claim 1, wherein
      • said expression vector comprises
  • 12
    12. A process for production of a insulin or insulin analogue, the process comprising
    • expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises: a first nucleotide sequence encoding a leader peptide of SEQ ID NO:3
    • a second nucleotide sequence encoding an affinity tag, wherein the affinity tag is expressed linked to a C-terminal end or a N-terminal end of said leader peptide
    • a third nucleotide sequence, wherein the third nucleotide sequence encodes a cleavage site or is a Restriction Enzyme (RE) site, and wherein the third nucleotide sequence is ligated to the first nucleotide sequence of encoding said leader peptide or to the second nucleotide sequence encoding said affinity tag
    • a multiple cloning site (MCS) in upstream region of the first nucleotide sequence encoding said leader peptide
    • a fourth nucleotide sequence encoding a ribosome binding site (RBS)
    • a promoter or operator sequence downstream of the fourth nucleotide sequence encoding said ribosome binding site (RBS)
    • and a fifth nucleotide sequence encoding an antibiotic selection marker, wherein the fifth nucleotide sequence is upstream of said promotor or operator sequence.
    • 13. The process of claim 12, wherein
      • said affinity tag is his-tag.
    • 14. The process of claim 12, wherein
      • said cleavage site is arginine.
  • 15
    15. A process for production of an insulin or insulin analogue, the process comprising
    • expressing the insulin or insulin analogue through an expression vector in bacteria, wherein said expression vector comprises SEQ ID NO: 1.
    • 16. The process of claim 15, wherein
      • the bacteria are E. coli.
See all independent claims <>

Description

This application is a National Stage Application of International Application No. PCT/IN2014/000506, filed 31 Jul. 2014, which claims benefit of Serial No. 2527/MUM/2013, filed 31 Jul. 2013 in India and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.

FIELD OF THE INVENTION

The present invention relates to production of proteins in a host cell, and more particularly to an expression vector for production of insulin or insulin analogues in prokaryotic cells.

DESCRIPTION OF THE RELATED ART

Recombinant DNA (rDNA) technology has been used to clone, express and purify several proteins of therapeutic or other economic value from prokaryotic cells e.g., bacterial cells. The major advantages of producing recombinant proteins in bacterial cells are shorter time to express proteins coupled with lower costs for production of them. The proteins may be produced in bacterial cells either intracellularly as soluble proteins or inclusion bodies, or extracellularly by secretion into periplasm or nutrient media. Despite the wide applications in production of different types of recombinant proteins, the bacterial production of heterologous proteins continues to face major challenges pertaining to low yields or expression of the recombinant protein like Insulin.

Expressing a heterologous gene in a host organism requires a vector that allows stable transformation of the host cells. Traditionally, higher secretion of the proteins, particularly insulin, or higher expression of the heterologous gene in a bacterial host cell is achieved by providing vectors with promoter sequences of the genes that express at higher levels in the bacterial host cell, by providing viral promoters in the vectors, by changing growth conditions, optimising media, by site-directed mutagenesis or by any other known recombinant DNA technique. However, above strategies fail to check following disadvantages associated with production of insulin in bacterial host cells:

    • a) Short half-life
    • b) High proteolysis
    • c) Low inclusion body formation
    • d) Presence of N-terminal Methionine residue in proinsulin/insulin obtained as a result of fermentation in bacterial cells.

A method to overcome some of the above disadvantages includes expressing B-chain and A-chain of insulin separately and then combining the B-chain and A-chain to produce a folded insulin molecule. However, this method has further disadvantages since the manufacturing of two separate chains is problematic owing to complicated procedures. Particularly, the reconstitution of the two chains results in a significant decrease in yields.

One of the preferred methods of production of the proteins like insulin is expressing insulin in form of proinsulin, which is precursor to Insulin made in humans and animals and consists of three chains A-C-B or B-C-A. The mature insulin is obtained after cleaving C-chain peptide from the A-C-B chain of the proinsulin. The gene of insulin is expressed as proinsulin inclusion bodies through a vector having a leader peptide attached to DNA sequence of the proinsulin, followed by cleaving of C-chain peptide to obtain regular insulin in unfolded form, and then refolding unfolded insulin to recover its activity and stability. Since the inclusion body is not affected by proteases, they can be accumulated to a high concentration which leads to higher production of inactive recombinant protein such as insulin.

Traditionally, the method of production of insulin includes inserting a proinsulin precursor gene (in B-C-A or A-C-B conformation) into a plasmid containing a gene of a protein having a high stability, in E. coli, such as βgalactosidase, and the proinsulin fusion protein inclusion bodies are expressed in E. coli transformed with the plasmid (Mukhopadhyay A. Adv Biochem Eng Biotechnol. 1997; 56:61-109). The inclusion bodies thus obtained are purified to increase the purity of insulin. Further, the inclusion bodies are dissolved by a treatment with a denaturant and are subjected to sulphonation to minimise formation of wrong disulphide bonding between molecules. Thereafter, the proinsulin fusion protein is treated with cyanogen bromide (CNBr) to cleave methionine residue connecting the leader peptide with proinsulin, which is followed by removal of CNBr and separation of proinsulin that is further purified and refolded with an oxidation and reduction system. Proinsulin is converted into active insulin by removing C-chain between its A-chain and B-chain using trypsin and/or carboxypeptidase B.

The above described process of production of insulin includes complex separation and purification processes that lead to low yield of insulin from relatively higher yield of proinsulin or inclusion bodies comprising proinsulin. Further, the use of toxic substances like CNBr comes with inherent challenge of handling and disposal of toxic substances. In production of insulin, enzymatic cleavages of the leader peptide or unwanted amino acid groups or peptides have also been explored.

Most of the enzymatic cleavage methods currently available for production of insulin require multiple enzymatic cleavage reactions to produce the protein of interest from the fusion protein inclusion bodies. For example, for obtaining Insulin from proinsulin, trypsin and carboxypeptidase are required to cleave off the C-Chain to give insulin. Trypsin is a serine protease that cleaves peptide chains at the carboxyl side of non-terminal amino acids lysine or arginine. Carboxypeptidase B is a metallocarboxypeptidase that cleaves terminal amino acids, lysine or arginine, from C-terminal end. However, when leader sequences are incorporated to increase formation of inclusion bodies, they are cleaved by additional enzymatic reactions as per the cleavage site present in them. This further complicates the purification process.

In other attempts, leader sequence or peptide used to produce proteins either shows a pre-dominantly hydrophilic or hydrophobic property. When leader sequence is hydrophilic, it leads to generation of more soluble proteins which are readily recognised by the proteases leading to low stability of the inclusion bodies. When leader sequence is hydrophobic, it leads to problems pertaining to refolding of proinsulin. In particular example of insulin, almost all leader peptide sequences currently available have arginine as one of their amino acid residues. This results in a number of digested or cleaved sequences upon digestion with Trypsin or Carboxypeptidase B, which complicates downstream purification process.

An attempt at improving insulin production includes expressing methionine-lysine-proinsulin construct in E. coli cells (Chen J Q, et al. Appl Biochem Biotechnol. 1995; 55:5-15). This simplifies the purification but the process generates a large amount of by-products when methionine-lysine-proinsulin is cleaved with trypsin and carboxypeptidase B to produce insulin. Another attempt includes use of lysine-arginine linker with a leader peptide attached to proinsulin (Jonasson P, et al. Eur J Biochem. 1996; 236:656-61). However, this results in expression of a by-product which is an arginine attached to B-chain of insulin. Other attempts at synthesising leader peptides were directed towards production of insulin in yeast cells.

Accordingly, there remains a need for plasmid vectors for production of insulin through bacterial cells which lead to high yield of insulin and are able to convert or translate high production of inclusion bodies to high recovery of insulin by enabling simple purification processes in their downstream processing.

SUMMARY OF THE INVENTION

In view of the foregoing, the embodiments herein, provide a novel expression vector for production of insulin and insulin analogues.

In an aspect, a process for production of insulin or insulin analogues by expression of Insulin or Insulin analogues through an expression vector in a host cell is provided. The expression vector includes a leader peptide of SEQ ID NO 3; a nucleotide sequence encoding an affinity tag linked to C-terminal end or N terminal end of nucleotide sequence of the leader peptide; and a nucleotide sequence encoding for a cleavage site ligated to nucleotide sequence of the leader peptide through nucleotide sequence encoding the affinity tag.

The leader peptide is expressed as a fusion protein; the fusion protein comprising fusion of the leader peptide of SEQ ID NO 3 and Insulin or Insulin analogues and the host cell is bacteria, preferably E. coli. The leader peptide has Methionine at N-terminus, followed by glycine to impart stability to fusion of the heterologous protein and the leader peptide.

Further, in one embodiment, the affinity tag is his-tag and the leader peptide is linked to proinsulin via the cleavage site. In one embodiment, the cleavage site is arginine.

The expression vector further include a nucleotide sequence encoding a multiple cloning site (MCS) in upstream region of the leader peptide; a nucleotide sequence encoding ribosome binding site (RBS) ligated to N-terminus or C-terminus of the leader peptide; a nucleotide sequence encoding a promoter or operator in the downstream of the ribosome binding site; and a nucleotide sequence encoding an antibiotic selection marker in upstream region of the promoter/operator sequence.

In one embodiment, the antibiotic selection marker is kanamycin. The process further includes formation of compound of formula from group consisting of: A-L-Arg-B-A-C, L-A-Arg-B-A-C, L-A-Arg-A-C-B or A-L-Arg-A-C-B in the host cells; wherein A is the affinity tag, L is the leader peptide of SEQ ID NO 3, Arg is arginine, B is B-chain of Proinsulin or Proinsulin analogue, A is A-chain of Proinsulin or Proinsulin Analogue, C is C-chain of Proinsulin or Proinsulin Analogue.

The process further includes digesting the compound of formula A-L-Arg-B-A-C, L-A-Arg-B-A-C, L-A-Arg-A-C-B or A-L-Arg-A-C-B with Trypsin to cleave off the leader peptide with affinity tag and C-chain of proinsulin to obtain molecule of insulin or insulin analogues having B-chain and A-Chain. The expression vector has nucleotide sequence of SEQ ID NO 1.

In another aspect, a process for production of insulin or insulin analogues by expression of Insulin or Insulin analogues through an expression vector in a host cell is provided. The expression vector includes a leader peptide of SEQ ID NO 3; a nucleotide sequence encoding an affinity tag linked to C-terminal end or N terminal end of nucleotide sequence of the leader peptide; a nucleotide sequence encoding for a cleavage site or Restriction Enzyme (RE) site ligated to nucleotide sequence of the leader peptide through nucleotide sequence encoding the affinity tag; a nucleotide sequence encoding a multiple cloning site (MCS) in upstream region of the leader peptide; a nucleotide sequence encoding ribosome binding site (RBS) ligated to N-terminus or C-terminus of the leader peptide; a nucleotide sequence encoding a promoter or operator in the downstream of the ribosome binding site; and a nucleotide sequence encoding an antibiotic selection marker in upstream region of the promoter/operator sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the embodiments herein, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of examples:

FIG. 1 illustrates an expression construct having a leader peptide for production of insulin in bacterial cells, according to an embodiment herein;

FIG. 2 illustrates MALDI-TOF spectrum obtained for Human Insulin and leader peptide obtained post enzymatic digestion of human Proinsulin, in accordance with the embodiments described herein; and

FIG. 3 illustrates SDS PAGE analysis of insulin and insulin analogues expressed in a control vector and in the vector of FIG. 1

DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting but rather to provide an understandable description of the invention.

The terms “a” or “an”, as used herein, are defined as one or more than one. The term “plurality”, as used herein, is defined as two or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language).

Vector Deposition

The vector pBGBactX is deposited for the patent purposes under Budapest Treaty at the MTCC (Microbial Type of Culture Collection) Chandigarh, India. The deposit was made on Mar. 21, 2013 and accorded deposit number as MTCC 5818. The sequence was characterised using DNA sequencer.

As mentioned, there is a need for plasmid vectors which lead to high yield of insulin and other heterologous proteins through simple purification processes. The embodiments herein provide a plasmid vector having nucleotide sequence listed under SEQ ID NO. 1.

FIG. 1 illustrates an expression construct having a leader peptide, for production of insulin in bacterial cells, according to an embodiment herein. The expression construct includes a DNA sequence, of SEQ ID NO 2 encoding for the leader peptide of SEQ ID NO. 3. The expression construct further includes a DNA sequence encoding an affinity tag in the C-terminal end of the DNA sequence of the leader peptide. In one embodiment, the affinity tag is his-tag or a sequence with 6 histidines in succession. In a preferred embodiment, the DNA sequence encoding the affinity tag is ligated to the N-terminal end of the DNA sequence of, the leader peptide.

Further, the leader peptide DNA sequence with his-tag is ligated to DNA sequence encoding B-chain (for B-C-A conformation) or to DNA sequence encoding A-Chain (A-C-B conformation) of proinsulin via a DNA sequence encoding for arginine. In a preferred embodiment, the DNA sequence encoding for arginine is ligated to the DNA sequence of the leader peptide through the DNA sequence encoding the affinity tag.

The leader peptide of SEQ ID NO. 2 includes DNA sequence encoding for Methionine in its N-terminal end. The DNA sequence for Methionine is followed up by addition of DNA sequence encoding for glycine. The addition of glycine provides stability to the proinsulin-protein fusion. The proinsulin and leader peptide assembly enables single step digestion using Trypsin to separate insulin molecule from leader peptide and C-chain. Furthermore, there is no arginine in the leader peptide sequence.

The leader peptide of SEQ ID NO. 2 is a neutral peptide with nearly as many hydrophobic amino acids as hydrophilic amino acids. In one embodiment, the leader peptide has 49% amino acids as hydrophobic. The neutrality of the leader peptide enables increase in formation of stable proinsulin inclusion bodies when the expression construct of FIG. 1 is expressed in the bacterial cells. Further, inclusion of arginine as the cleavage site for removal of the leader peptide of SEQ ID NO 2 ensures that a single step is required to cleave off the C-chain and the leader peptide from the proinsulin fusion to obtain active insulin.

The DNA sequence for the protein of interest i.e. Insulin or its analogue is inserted in the Multiple Cloning Site (MCS) of the expression vector as shown in FIG. 1. Multiple cloning site or polylinker constitutes a short segment of DNA which contains a number of (generally up to 20) Restriction Enzyme (RE) sites—a standard feature of engineered plasmids.

In a preferred embodiment, the leader peptide and the MCS are custom synthesised as single stranded oligonucleotides, which are used for synthesis of double stranded DNA fragment by PCR. In one embodiment, the overlapping PCR method is used to synthesis double stranded DNA. Optionally, the leader peptide and the MCS may be directly synthesised as double stranded DNA fragments. Further, the RE sites were incorporated at 5′ end and the 3′ end of the synthesised DNA fragment. Furthermore, a Promoter/Operator region, a Ribosome Binding Site (RBS), an origin of replication and a antibiotic resistant gene were ligated with the PCR amplified DNA sequence coding for leader peptide, followed by MCS containing unique restriction enzyme sites. In one embodiment, the leader peptide is cloned downstream of the RBS, between Nco1 and EcoR1 restriction sites in the MCS.

Accordingly, the cleavage site, to cleave off the leader peptide and elicit a recombinant peptide/protein of interest, may be customised according to the recombinant peptide/protein of interest. The heterologous protein or the protein of interest may be cloned between any of the two RE sites in the MCS.

In an embodiment, the expression construct of FIG. 1 encodes a compound of Formula (I)

A-L-X-P

in which, L is the leader peptide of SEQ ID NO 3, A is the affinity tag, X is the cleavage site and P is a heterologous protein. In another embodiment, the expression construct of Figure encodes a compound of Formula (II)

L-A-X-P

In another embodiment, the expression construct of FIG. 1 encodes a compound of formula (III):

A-L-Arg-B-C-A

Or a compound of formula (IV):

L-A-Arg-B-C-A

in which, L is the leader peptide, A is a his-tag, acting as the affinity tag with six consecutive histidine residues, arginine is the cleavage site that links the leader peptide via the his-tag in its C-terminal end to the B chain of Proinsulin, whereas C is the C chain of Proinsulin and A is the A chain of Proinsulin. In one embodiment, the C-chain of Proinsulin includes an arginine residue only.

In another embodiment, the expression construct of FIG. 1 encodes a compound of formula (V):

L-A-Arg-A-C-B

Or a compound of formula (VI):

A-L-Arg-A-C-B

in which arginine, the cleavage site links the leader peptide via the his-tag in its C-terminal end to the A chain of Proinsulin.

In one embodiment, the leader peptide of SEQ ID NO 2 has first amino acid residue as methionine and the second amino acid residue as glycine, which imparts stability to the leader peptide. The advantage of having the arginine residue as the cleavage site to cleave off the leader peptide post-expression in the bacterial cells is that it enables single step, double reaction based enzymatic digestion of the compounds of formula I, II, III, IV, V or VI.

The embodiments above are further explained through way of examples as follows:

EXAMPLES

Example 1: Construction of Vector

The oligonucleotides for the human proinsulin (hPI) gene were custom synthesized (Sigma Aldrich). The single stranded oligonucleotides were reconstituted in 10 mM TE buffer (pH—8.0). The 0.5 uM of each forward and reverse oligonucleotide was used for PCR reaction to form double stranded DNA. The cycling conditions used for the PCR were: one cycle of 95° C. for 5 min for initial denaturation, followed by 35 cycles comprising of denaturation at 95° C. for 20 sec, annealing at 65° C. for 20 sec and elongation at 72° C. for 30 sec. The final extensions of 5 min at 72° C. were included for the complete synthesis of the gene. The series of sequential PCR reactions were carried out to synthesize the complete hPI gene. The EcoRI and XhoI restriction enzyme sites were incorporated at the 5′ end and the 3′ end of the hPI gene respectively in the final PCR amplification. The sequence ID of the vector synthesized herein is SEQ ID No 1.

Example 2: Purification of hPI Gene

The hPI (human proinsulin) gene was purified using phenol chloroform iso-amyl alcohol (25:24:1 ratio) extraction method and precipitated using ethanol. The pellet obtained was washed with 70% ethanol, air dried and reconstituted in 10 mM Tris buffer (pH 8.0).

Example 3: Cloning hPI Gene in the Vector

10 ug of the plasmid. DNA described herein and purified hPI gene were digested in 50 μl of reaction volume containing 1× restriction buffer with 10 Units each of EcoR I and Xho I (MBI Fermentas). The reaction was incubated for 30 min at 37° C. in the water bath. The digested plasmid DNA and hPI gene were purified using Qiagen gel Extraction Kit and the purified samples were eluted in 30 μl of elution buffer. The 10 μl ligation reactions were set using different vector to insert ratio and 4 Weiss units of T4 DNA ligase (MBI Fermentas). The ligation reaction were incubated at 4° C. for 16 hours and then transformed into DH5α strain of E. coli. The transformants were selected on Luria agar containing 75 μg/ml of Kanamycin. The sequence identity of the desired hPI gene is confirmed by nucleotide sequencing using automated DNA sequencer (CEQ 8000, Beckman Coulter).

Example 4: Transforming E. coli Cells

The vector-hPI DNA was transformed into E. coli expression host BL21 (DE3) and was allowed to grow in standard culture conditions. After the fermentation was completed, the inclusion bodies were isolated after lysing of cells. The inclusion bodies contained human pro-insulin in unfolded form.

Example 5: Isolation and Purification of Refolded Insulin from Human Proinsulin

The inclusion bodies having human proinsulin were further reduced and subjected to refolding using conventional methods in the presence of cysteine and cystine. The cysteine to cystine ratio was used in the ratio of 1:10. The refolding was performed at alkaline pH in the range of 8-10.5, preferably 9.5. The refolding reaction was incubated for 24 h at 4° C. The refolded. Proinsulin was converted to mature insulin by proteolysis using trypsin and Carboxypeptidase b with a ration of Proinsulin to enzyme of 300:1 and 600:1 (w/w), respectively. Digestion was performed in 0.1 M Tris/HCl, 1 mM MgCl2, pH 7.5 at ambient temperature for 30 min. FIG. 2 illustrates MALDI-TOF spectrum obtained for Human Insulin and leader peptide obtained post enzymatic digestion of human Proinsulin, in accordance with the embodiments described herein. The peak of 5.8 kDa corresponds to Human Insulin and mass of 4.75 kDa corresponds to leader peptide. Hence, proving a single step digestion using the expression vector as described herein.

Example 6: Expression Analysis

SDS PAGE analysis of Human Insulin and Insulin analogues expressed from control vector and the vector described herein was performed. The reaction was run on 15% SDS-PAGE and stained with Coomassie brilliant blue.

FIG. 3 illustrates SDS PAGE analysis of insulin and insulin analogues expressed in a control vector and in the vector of FIG. 1. Lane 1 shows medium molecule weight marker, Lane2 shows Human Insulin uninduced sample from control vector, Lane 3 shows Human Insulin expressed from control vector, Lane 4 shows Human Insulin uninduced sample from the vector described herein, Lane 5 shows Human Insulin expressed from the vector described herein, Lane 6 shows Insulin Aspart uninduced sample from control vector, Lane 7 shows Insulin Aspart expressed from control vector, Lane 8 shows Insulin Aspart uninduced sample from the vector described herein, Lane 9 shows Insulin Aspart expressed from the vector described herein, Lane 10 shows Insulin Lispro uninduced sample from control vector, Lane 11 shows Insulin Lispro expressed from control vector, Lane 12 shows Insulin Lispro uninduced sample from the vector described herein, Lane 13 shows Insulin Lispro expressed from the vector described herein.

<160> NUMBER OF SEQ ID NOS: 3

<210> SEQ ID NO: 1

<211> LENGTH: 5605

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Complete Vector construct, includes various

regulartory sequences, promoter, leader peptide

<400> SEQENCE: 1

tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60

cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120

ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180

gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240

acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300

ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360

ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420

acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480

tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540

tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600

tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660

actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720

gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780

aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840

agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900

cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960

aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020

tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080

tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140

taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200

ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260

tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320

tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380

cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440

cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500

gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560

gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620

agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680

aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740

agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800

cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860

accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920

aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980

ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040

cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100

gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160

tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220

agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280

tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340

caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400

ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460

gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520

gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580

gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640

aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700

ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760

acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820

ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880

tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940

tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000

cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060

gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120

ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180

catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240

ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300

gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360

gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420

ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480

atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540

cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600

tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660

ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720

aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780

atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840

cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900

gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960

tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020

agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080

gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140

ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200

catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260

tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320

tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380

gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440

ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500

tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560

catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620

cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680

tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740

ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800

ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860

cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920

gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980

aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040

ttttgtttaa ctttaagaag gagatatacc atgggcagca gcatgggcgc tactggtgtg 5100

ccgttcagcg gaatggtgag cctccagatg ggtcatcaag gaagcggtag ctcccatcat 5160

catcatcatc acgaattccg ttttgtgaac caacacctgt gcggctcaca cctggtggaa 5220

gctctctacc tagtgtgcgg ggaacgaggc ttcttctaca cacccaagac ccgccgggag 5280

gcagaggacc tgcaggtggg acaagtggag ctgggtggag gcccgggggc cgggagtctt 5340

cagcccttgg cactggaggg ttccctgcag aagcgtggca ttgtggaaca atgctgtacc 5400

agcatctgct ccctctacca gctggagaac tactgcaact aactcgagca ccaccaccac 5460

caccactgag atccggctgc taacaaagcc cgaaaggaag ctgagttggc tgctgccacc 5520

gctgagcaat aactagcata accccttggg gcctctaaac gggtcttgag gggttttttg 5580

ctgaaaggag gaactatatc cggat 5605

<210> SEQ ID NO: 2

<211> LENGTH: 84

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Leader peptide nucleotide sequence

<400> SEQENCE: 2

atgggcagca gcatgggcgc tactggtgtg ccgttcagcg gaatggtgag cctccagatg 60

ggtcatcaag gaagcggtag ctcc 84

<210> SEQ ID NO: 3

<211> LENGTH: 28

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Leader peptide

<400> SEQENCE: 3

Met Gly Ser Ser Met Gly Ala Thr Gly Val Pro Phe Ser Gly Met Val

1 5 10 15

Ser Leu Gln Met Gly His Gln Gly Ser Gly Ser Ser

20 25

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

18.48/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

43.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

62.49/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

47.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

24.0/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Title Current Assignee Application Date Publication Date
Method for making human insulin precursors and human insulin NOVO NORDISK A/S,KJELDSEN, THOMAS, BØRGLUM 26 March 2004 07 October 2004
See full citation <>

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales