Great research starts with great data.

Learn More
More >
Patent Analysis of

Compositions and methods for enhanced gene expression in cone cells

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10000741

Application Number

US14/660657

Application Date

17 March 2015

Publication Date

19 June 2018

Current Assignee

UNIVERSITY OF WASHINGTON,ADVERUM BIOTECHNOLOGIES, INC.

Original Assignee (Applicant)

AVALANCHE BIOTECHNOLOGIES, INC.,UNIVERSITY OF WASHINGTON

International Classification

C07K14/705,C12N15/86,C12N7/00,A61K35/761,A61K48/00

Cooperative Classification

C12N7/00,A61K35/761,C12N15/86,A61K38/00,A61K48/00

Inventor

CHALBERG, THOMAS W.,NEITZ, JAY,NEITZ, MAUREEN

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10000741 Compositions enhanced 1 US10000741 Compositions enhanced 2 US10000741 Compositions enhanced 3
See all images <>

Abstract

The present disclosure provides polynucleotide cassettes, expression vectors and methods for the expression of a gene in cone cells.

Read more

Claims

1. A polynucleotide cassette for enhanced expression of a transgene in cone cells of a mammalian retina, comprising(a) a promoter region consisting of a truncated M-Opsin promoter having a sequence identity of 85% or more to SEQ ID NO:80;(b) a coding sequence operatively linked to the promoter region; and(c) a polyadenylation site operatively linked to the coding sequence.

2. The polynucleotide cassette of claim 1, further comprising a 5′ untranslated region (5′UTR) consisting essentially of a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89.

3. The polynucleotide cassette of claim 2, wherein the 5′UTR does not comprise a polynucleotide ATG.

4. The polynucleotide cassette of claim 2, wherein the 5′ UTR consists essentially of a sequence having a sequence identity of 85% or more to the full length of SEQ ID NO:85 or SEQ ID NO:86.

5. The polynucleotide cassette of claim 2, further comprising an intron.

6. The polynucleotide cassette of claim 5, wherein the intron comprises a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:59, and SEQ ID NO:60.

7. The polynucleotide cassette of claim 6, wherein the intron is located within the polynucleotide sequence comprising the 5′ UTR.

8. The polynucleotide cassette of claim 1, further comprising a translation initiation sequence.

9. The polynucleotide cassette of claim 8, wherein the translation initiation sequence comprises a polynucleotide sequence consisting essentially of SEQ ID NO:72 or SEQ ID NO:73.

10. The polynucleotide cassette of claim 1, further comprising an enhancer sequence having a sequence identity of 85% or more to SEQ ID NO:52 or a functional fragment thereof.

11. The polynucleotide cassette of claim 10, wherein the enhancer sequence consists essentially of a sequence having a sequence identity of 85% or more to the full length of SEQ ID NO:51.

12. The polynucleotide cassette of claim 1, wherein expression of the coding sequence is greater than expression of the coding sequence when the promoter region is replaced with the promoter region of SEQ ID NO:1 when introduced into a mammalian cone cell.

13. A recombinant adeno-associated virus (rAAV) comprising: a) an AAV capsid protein, and b) the polynucleotide cassette of claim 1 flanked by AAV ITRs.

14. A pharmaceutical composition comprising the rAAV of claim 13 and a pharmaceutical excipient.

15. A method for expressing a transgene in cone cells, comprising: contacting one or more cone cells with an effective amount of the recombinant adeno-associated virus of claim 13, wherein the transgene is expressed at detectable levels in the one or more cone cells.

16. The method according to claim 15, comprising detecting the expression in the cone cells, wherein expression is detected in 60% or more of the cone cells.

17. A method for the treatment or prophylaxis of a cone cell disorder in a mammal in need thereof, comprising administering to the eye of the mammal an effective amount of the pharmaceutical composition of claim 14, wherein the coding sequence encodes a therapeutic gene product, and the rAAV expresses the therapeutic gene product in the cone cells of the mammal.

18. The method of claim 17, wherein the cone cell disorder is a macular dystrophy, a color vision disorder, or a vision disorder of the central macula.

19. The method of claim 18, wherein the color vision disorder is selected from the group consisting of achromotopsia, blue cone monochromacy, a protan defect, a deutan defect, and a tritan defect.

20. The method of claim 18, wherein the method further comprises detecting a change in the disease symptoms, wherein the change comprises an increase in the ability of the mammal to perceive a color.

21. The method of claim 18, wherein the macular dystrophy is selected from the group consisting of Stargardt's macular dystrophy, cone dystrophy, cone-rod dystrophy, Spinocerebellar ataxia type 7, and Bardet-Biedl syndrome-1.

22. The method of claim 18, wherein the vision disorder of the central macula is selected from the group consisting of age-related macular degeneration, macular telangiectasia, retinitis pigmentosa, diabetic retinopathy, retinal vein occlusions, glaucoma, Sorsby's fundus dystrophy, adult vitelliform macular dystrophy, Best's disease, rod-cone dystrophy, Leber's congenital amaurosis, and X-linked retinoschisis.

23. The method of claim 18, wherein the method further comprises detecting a change in the disease symptoms, wherein the change comprises reducing the rate of visual acuity loss of the mammal.

24. The polynucleotide cassette of claim 1, wherein the promoter region consists of SEQ ID NO:80.

25. The polynucleotide cassette of claim 1, wherein the promoter region consists of a truncated M-Opsin promoter having a sequence identity of 95% or more to SEQ ID NO:80.

26. A polynucleotide cassette for enhanced expression of a transgene in cone cells of a mammalian retina, comprising SEQ ID NO:95.

Read more

Claim Tree

  • 1
    1. A polynucleotide cassette for enhanced expression of a transgene in cone cells of a mammalian retina, comprising
    • (a) a promoter region consisting of a truncated M-Opsin promoter having a sequence identity of 85% or more to SEQ ID NO:80;
    • (b) a coding sequence operatively linked to the promoter region; and
    • (c) a polyadenylation site operatively linked to the coding sequence.
    • 2. The polynucleotide cassette of claim 1, further comprising
      • a 5′ untranslated region (5′UTR) consisting essentially of a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89.
    • 8. The polynucleotide cassette of claim 1, further comprising
      • a translation initiation sequence.
    • 10. The polynucleotide cassette of claim 1, further comprising
      • an enhancer sequence having a sequence identity of 85% or more to SEQ ID NO:52 or a functional fragment thereof.
    • 12. The polynucleotide cassette of claim 1, wherein
      • expression of the coding sequence is greater than expression of the coding sequence when the promoter region is replaced with the promoter region of SEQ ID NO:1 when introduced into a mammalian cone cell.
    • 24. The polynucleotide cassette of claim 1, wherein
      • the promoter region consists of SEQ ID NO:80.
    • 25. The polynucleotide cassette of claim 1, wherein
      • the promoter region consists of a truncated M-Opsin promoter having
  • 13
    13. A recombinant adeno-associated virus (rAAV) comprising:
    • a) an AAV capsid protein, and
    • b) the polynucleotide cassette of claim 1 flanked by AAV ITRs.
  • 14
    14. A pharmaceutical composition comprising
    • the rAAV of claim 13 and a pharmaceutical excipient.
  • 15
    15. A method for expressing a transgene in cone cells, comprising:
    • contacting one or more cone cells with an effective amount of the recombinant adeno-associated virus of claim 13, wherein the transgene is expressed at detectable levels in the one or more cone cells.
    • 16. The method according to claim 15, comprising
      • detecting the expression in the cone cells, wherein expression is detected in 60% or more of the cone cells.
  • 17
    17. A method for the treatment or prophylaxis of a cone cell disorder in a mammal in need thereof, comprising
    • administering to the eye of the mammal an effective amount of the pharmaceutical composition of claim 14, wherein the coding sequence encodes a therapeutic gene product, and the rAAV expresses the therapeutic gene product in the cone cells of the mammal.
    • 18. The method of claim 17, wherein
      • the cone cell disorder is a macular dystrophy, a color vision disorder, or a vision disorder of the central macula.
  • 26
    26. A polynucleotide cassette for enhanced expression of a transgene in cone cells of a mammalian retina, comprising
    • SEQ ID NO:95.
See all independent claims <>

Description

STATEMENT REGARDING SEQUENCE LISTING

The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is AVBI_005_02US_ST25.txt. The text file is 308 KB, was created on Mar. 17, 2015, and is being submitted electronically via EFS-Web.

FIELD OF THE INVENTION

This invention pertains to gene therapy of retinal disorders.

BACKGROUND OF THE INVENTION

Vision disorders of the eye often relate to known primary defects in cone cells. These include macular dystrophies such as Stargardt's macular dystrophy, cone dystrophy, cone-rod dystrophy, Spinocerebellar ataxia type 7, and Bardet-Biedl syndrome-1, as well as color vision disorders, including achromotopsia, blue cone monochromacy, and protan, deutan, and tritan defects.

In addition to those disorders where the known cause is intrinsic to cone photoreceptors, there are vision disorders of the central macula (within primates) that may be treated by targeting cone cells. These include age-related macular degeneration, macular telangiectasia, retinitis pigmentosa, diabetic retinopathy, retinal vein occlusions, glaucoma, Sorsby's fundus dystrophy, adult vitelliform macular dystrophy, Best's disease, and X-linked retinoschisis.

A promising approach to treating and preventing ophthalmic disease that addresses the limitations of existing treatment is delivery of therapeutic agents to the eye with a gene therapy vector such as an adeno-associated virus (AAV). AAV is a 4.7 kb, single stranded DNA virus. Recombinant vectors based on AAV are associated with excellent clinical safety, since wild-type AAV is nonpathogenic and has no etiologic association with any known diseases. In addition, AAV offers the capability for highly efficient gene delivery and sustained transgene expression in numerous tissues, including eye, muscle, lung, and brain. Furthermore, AAV has shown promise in human clinical trials. One example is Leber's congenital amaurosis in which patients treated with a therapeutic delivered by a single subretinal administration of an rAAV vector have experienced sustained clinical benefit from expression of the therapeutic agent for more than four years from the initial date of treatment.

A number of challenges remain with regard to designing polynucleotide cassettes and expression vectors for use in gene therapy to treat eye disease generally and cone cells specifically. One significant challenge is obtaining sufficient expression of the transgene in target cells, especially in cone cells of the retina. A longstanding unmet need in the art has been sufficiently robust expression of transgenes following gene transfer. In some cases, more efficient expression is required for the efficacy of certain vectors, for example plasmid DNA vectors. In other cases, more efficient gene expression cassettes are desirable to allow for a lower therapeutic dose that has a more favorable safety profile or a less invasive route of administration (e.g., intravitreal vs. subretinal). In some settings, efficient expression has been achieved using a strong, ubiquitous promoter, but it is often desirable to have high transgene expression using a nucleic acid expression cassette that is only expressed in target cell types.

Previous efforts to express transgenes in cone cells, for example as disclosed in US patent application US 2012/0172419, showed some promise, but often the expression levels were lower than optimal or not cell specific. Given that a number of vision disorders result from primary defects in cone cells, specific expression of transgenes in cone cells, with high expression levels, would represent a meaningful advance in the art. Therefore, there remains a need for improved methods and optimized nucleic acid cassettes and vectors for expressing genes in cone cells.

SUMMARY OF THE INVENTION

The present disclosure provides polynucleotide cassettes, expression vectors and methods for the expression of a gene in cone cells.

In some aspects of the invention, polynucleotide cassettes are provided for the expression of a transgene in cone cells of a mammalian retina. In some embodiments, the expression of the transgene is enhanced expression. In certain embodiments, the expression of the coding sequence is greater than expression of the transgene operably linked to SEQ ID NO:1. In some embodiments, the expression of the transgene is cone-specific.

In some embodiments, the polynucleotide cassette comprises a promoter region, wherein the promoter region promotes the expression of a gene in retinal cone cells; and a polyadenylation site. In some embodiments, the expression is specifically in cone cells. In some such embodiments, the promoter region comprises a polynucleotide sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81. SEQ ID NO:82, and SEQ ID NO:83, or a functional fragment thereof. In some embodiments, the promoter region is less than 492 nucleotides in length. In some embodiments, the promoter region consists essentially of a polynucleotide sequence having a sequence identity of 85% or more to the full length of SEQ ID NO:55 or a functional fragment thereof.

In some embodiments, the polynucleotide cassette comprises a polynucleotide sequence encoding an untranslated region 5′ for a coding sequence, referred to herein as a 5′UTR. In some such embodiments, the 5′UTR comprises a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89, or a fragment thereof. In some embodiments, some or all of the 5′UTR sequence is comprised by a promoter region as disclosed in, for example, SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, or SEQ ID NO:79. In some embodiments, the 5′UTR sequence is heterologous to the promoter sequence. In some embodiments, the 5′UTR consists essentially of a sequence having a sequence identity of 85% or more to the full length of SEQ ID NO:85 or SEQ ID NO:86, or a fragment thereof. In some embodiments, the 5′UTR does not comprise a polynucleotide ATG.

In some embodiments, the polynucleotide cassette comprises an intron. In some such embodiments, the intron comprises a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:59, and SEQ ID NO:60. In certain embodiments, the intron is located within the polynucleotide sequence encoding a 5′UTR.

In some embodiments, the polynucleotide cassette comprises a translation initiation sequence. In some such embodiments, the translation initiation sequence comprises a polynucleotide sequence consisting essentially of SEQ ID NO:72 or SEQ ID NO:73.

In some embodiments, the polynucleotide cassette comprises an enhancer sequence. In some such embodiments, the enhancer sequence comprises a polynucleotide sequence having a sequence identity of 85% or more to SEQ ID NO:52 or a functional fragment thereof. In certain embodiments, the enhancer sequence consists essentially of a sequence having a sequence identity of 85% or more to the full length of SEQ ID NO:51.

In some embodiments, the polynucleotide cassette comprises a coding sequence operably linked to the promoter. In some embodiments, the coding sequence is heterologous to the promoter region and/or the 5′UTR sequence. In some embodiments, the coding sequence encodes a polypeptide having a sequence identity of at least 85%, 90%, or 95% to SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:49, and a polymorph of SEQ ID NO:11 selected from the group consisting of: (i) Thr65Ile (ii) Ile111Val (iii) Ser116Tyr (iv) Leu153Met (v) Ile171Val (vi) Ala174Val (vii) Ile178Val (viii) Ser180Ala (ix) Ile230Thr (x) Ala233Ser (xi) Val236Met (xii) Ile274Val (xiii) Phe275Leu (xiv) Tyr277Phe (xv) Val279Phe (xvi) Thr285Ala (xvii) Pro298Ala; and (xviii) Tyr309Phe. In some embodiments, the coding sequence has a sequence identity of at least 85%, 90%, or 95% to SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, or SEQ ID NO:71. In some embodiments, the sequence between the transcription initiation site and the end of coding sequence does not contain an open reading frame, other than the transgene open reading frame, that is more than 500 nucleotides in length. In some embodiments, the sequence between the transcription initiation site and the end of coding sequence does not contain an open reading frame, other than the transgene open reading frame, that is more than 273 nucleotides in length. In some embodiments, the sequence between the transcription initiation site and the end of coding sequence does not contain an open reading frame, other than the transgene open reading frame, that is more than 250 nucleotides in length. In some embodiments, at least one open reading frame of the coding sequence has been removed.

In some embodiments, the polynucleotide comprises a promoter region, wherein the promoter region promotes the expression of a gene in retinal cone cells; a 5′ untranslated region; an intron; a translation initiation sequence; a coding sequence operatively linked to the promoter region; and a polyadenlyation site. In some embodiments, the polynucleotide comprises a promoter region, wherein the promoter region promotes the expression of a gene specifically in retinal cone cells; a 5′ untranslated region; an intron; a translation initiation sequence; a coding sequence operatively linked to the promoter region; and a polyadenlyation site.

In some aspects of the invention, gene delivery vectors are provided comprising a polynucleotide cassette of the present invention. In some embodiments, the gene delivery vector is a recombinant adeno-associated virus, wherein the recombinant adeno-associated virus comprises an AAV capsid protein. In some embodiments, the AAV capsid protein is a wild type AAV capsid protein. In other embodiments, the AAV capsid protein is a variant AAV capsid protein. In certain embodiments, the variant AAV capsid protein comprises a peptide insertion in the AAV GH loop selected from the group consisting of LGETTRP (SEQ ID NO:96), NETITRP (SEQ ID NO:97), KAGQANN (SEQ ID NO:98), KDPKTTN (SEQ ID NO:99), KDTDTTR (SEQ ID NO:100), RAGGSVG (SEQ ID NO:101), AVDTTKF (SEQ ID NO:102), and STGKVPN (SEQ ID NO:103).

In some aspects of the invention, pharmaceutical compositions are provided comprising a polynucleotide cassette of the invention and a pharmaceutical excipient. In some embodiments, the pharmaceutical composition comprises a gene delivery vector of the invention and a pharmaceutical excipient.

In some aspects of the invention, methods are provided for expressing a transgene in cone cells. In some embodiments, the method comprises contacting one or more cone cells with an effective amount of a polynucleotide cassette of the invention or a gene delivery vector of the invention, wherein the transgene is expressed at detectable levels in the one or more cone cells. In some embodiments, the method is in vitro. In other embodiments, the method is in vivo. In certain such embodiments, the contacting comprises injection of the polynucleotide cassette or gene delivery vector into the vitreous of a mammal eye. In other such emobidments, the method comprises injection of the polynucleotide cassette or gene delivery vector into the subretinal space of a mammal eye. In some embodiments, the method further comprises detecting the expression of the trangene in cone cells, wherein expression is detected in 80% or more of the cone cells. In some embodiments, the expression is specific for cone cells.

In some aspects of the invention, methods are provided for the treatment or prophylaxis of a cone cell disorder in a mammal in need of treatment or prophylaxis for a cone cell disorder. In some embodiments, the method comprises administering to the eye of the mammal an effective amount of a pharmaceutical composition of the invention, wherein the coding sequence encodes a therapeutic gene product. In some embodiments, the administering comprises injecting the pharmaceutical composition into the vitreous of the mammal eye. In other such embodiments, the method comprises injecting the pharmaceutical composition into the subretinal space of a mammal eye.

In some embodiments, the cone cell disorder is a color vision disorder. In certain embodiments, the color vision disorder is selected from the group consisting of achromotopsia, blue cone monochromacy, a protan defect, a deutan defect, and a tritan defect. In some such embodiments, the method further comprises detecting a change in the disease symptoms, wherein the change comprises an increase in the ability of the mammal to perceive a color. In some embodiments, the cone cell disorder is a macular dystrophy. In certain embodiments, the macular dystrophy is selected from the group consisting of Stargardt's macular dystrophy, cone dystrophy, cone-rod dystrophy, Spinocerebellar ataxia type 7, and Bardet-Biedl syndrome-1. In some embodiments, the cone cell disorder is a vision disorder of the central macula. In certain embodiments, vision disorder of the central macula is selected from the group consisting of age-related macular degeneration, macular telangiectasia, retinitis pigmentosa, diabetic retinopathy, retinal vein occlusions, glaucoma, Sorsby's fundus dystrophy, adult vitelliform macular dystrophy, Best's disease, rod-cone dystrophy, Leber's congenital amaurosis, and X-linked retinoschisis. In some such embodiments, the method further comprises detecting a change in the disease symptoms. In some such embodiments, the change comprises a stabilization in the health of the cone cells and/or a reduction in the rate of visual acuity loss of the mammal. In certain such embodiments, the change comprises an improvement in the health of the cone cells and/or an improvement in the visual acuity of the mammal.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1A depicts the schematic overview of polynucleotide cassettes for enhanced expression of a transgene in cone cells.

FIG. 1B depicts a schematic overview of viral vectors comprising polynucleotide cassettes for enhanced expression of a transgene in cone cells.

FIG. 2 depicts an example intron containing canonical features, including consensus sequences for the splice donor (A/C) A G G T Pu A G U; branch site C T Pu A Py; Py-rich region; and acceptor N C A G G.

FIG. 3A depicts an example 5′UTR mRNA structure (SEQ ID NO:56), the 5′UTR mRNA structure from pR2.1 (Mancuso et al.). This 5′ UTR has two upstream AUGs and open reading frames (ORF), a high level of base pairing and hairpin structure, and a shorter Kozak sequence.

FIG. 3B depicts an example 5′UTR mRNA and structure (SEQ ID NO:57) from an optimized cassette of the present disclosure. The 5′ UTR comprises no upstream AUG and no ORFs. In addition, as compared to the 5′ UTR of FIG. 3A, the 5′ UTR of FIG. 3B is shorter, with less base pairing; and the Kozak sequence is longer.

FIG. 4A depicts a polynucleotide cassette before codon optimization. Open reading frames (ORFs) greater than 250 nucleotides in length are shown in gray below the sequence.

FIG. 4B depicts a polynucleotide cassette after codon optimization, but before removal of non-transgene ORFs. ORFs greater than 250 nucleotides are shown in gray below sequence diagram. Note the introduction of a new ORF in reverse orientation beginning from SV40 polyA and extending 1,365 bases.

FIG. 4C depicts a polynucleotide cassette after codon optimization and removal of ORFs. ORFs greater than 250 nucleotides are shown in gray below the sequence diagram. Note that the sequence has been optimized so that newly introduced ORFs are shortened or removed.

FIG. 5 illustrates how intravitreally-delivered AAV2 variant AAV2-7m8 transduces retinal cells in the fovea centralis and parafovea of primates more efficiently than intravitreally-delivered AAV2.5×1011 vector genomes of AAV2.CMV.GFP (upper left); AAV-2.5T.CMV.GFP (upper right) (Excoffon K. J., et al. 2009. Proc. Natl. Acad. Sci. U.S.A. 106:3865-3870); (lower left) AAV2-7.8.CMV.GFP (Dalkara D, et al. Sci Transl Med. 2013 Jun. 12; 5(189):189ra76); or AAV-ShH10.CMV.GFP (lower right) (Klimczak R R et al. PLoS One. 2009 Oct. 14; 4(10):e7467) was injected into the vitreous of an African green monkey in a volume of 50 uL, and GFP expression was observed 8 weeks later by OCT fluorescence imaging in vivo.

FIG. 6 illustrates how robustly the pMNTC regulatory cassette promotes gene expression in foveal cones of primates. (a-b) AAV2-7m8.MNTC.GFP was injected into the central vitreous of a baboon and expression was observed (a) 5 weeks and (b) 8 weeks later by fundus fluorescence. (c and d) Natural GFP fluorescence within a 15 micron section of the fovea at approximately 6 months after injection with AAV2-7m8.MNTC.GFP at low magnification (c) and high magnification (d).

FIG. 7 illustrates robust and cone-specific gene expression in the cones of a mouse retina following intravitreal injection of AAV-delivery MNTC.GFP. (a-b) Examples of GFP fluorescence 11 weeks after mice received intravitreal injections of 5.04×1010 vector genomes via intravitreal injection. (c-e) retinas were harvested for histology 14 weeks after injection and cone outersegments were labeled with an antibody to L/M opsin (red). In (c) the red channel is turned off so only the native GFP is visible, (d) is the same image with the red channel on to allow visualization of cone outersegments. Comparison of (c) and (d) shows that most if not all cones were transduced by the virus. (e) Image from the same retina as in c and d from different angle showing profiles of cone photoreceptors.

FIG. 8 illustrates gene expression directed by the pMNTC regulatory cassette in the cones of the Mongolian gerbil retina. 1×1010-2×1010 vector genomes of virus carrying GFP under the control of the CMV, pR2.1, or MNTC promoter were injected in a volume of 5 uL into the vitreous of a Mongolian gerbil, and GFP expression visualized at the designated time points by fundus fluorescence imaging. (a) Expression of GFP directed by AAV2-7m8.CMV.GFP and AAV2-7m8.MNTC.GFP, visualized 4 weeks after intravitreal administration. Gerbils 12-10, 12-11, and 12-12 were injected with AAV2-7m8.CMV.GFP, while gerbils 12-13, 12-14, and 12-15 were injected with AAV2-7m8.MNTC.GFP. OD, oculus dexter (right eye). OS, oculus sinister (left eye). (b) Expression of GFP directed by AAV2-7m8.pR2.1.GFP and AAV2-7m8.MNTC.GFP, 4 and 8 weeks later as detected by fundus fluorescence imaging.

FIGS. 9A-9D demonstrate that the pMNTC regulatory cassette provides for more robust gene expression in foveal cones of primates than the cone promoter pR2.1. 5×1011 vector genomes of AAV2-7m8.MNTC.GFP or AAV2-7m8.pR2.1.GFP were injected in a volume of 50 uL into the vitreous of African Green Monkeys as indicated (AAV2-7m8.MNTC.GFP into animals 271 and 472; AAV2-7m8.pR2.1.GFP into animals 500 and 509). Retinas were visualized in vivo at (a) 2 weeks, (b) 4 weeks, (c) 8 weeks, and (d) 12 weeks for GFP using a fundus fluorescence camera (a, b, c, d) or autofluorescence on Heidelberg Spectralis OCT (a, b; data not shown for weeks 8 and 12). OD, oculus dexter (right eye). OS, oculus sinister (left eye).

FIGS. 10A-10D demonstrate the contribution of each of the optimized pMNTC elements to the more robust expression observed. (a) The pMNTC and pR2.1 expression cassettes. (b) The experimental expression cassettes, in which each element in pMNTC is replaced one-by-one by the corresponding element in pR2.1. (c,d) Expression of the luciferase transgene in the retinas of gerbils intravitreally injected with each of the test articles (n=6-8 eyes per construct) as detected (c) 4 weeks and (d) 8 weeks after injection by IVIS imaging. “7m8.CMV” served as the positive control.

DEFINITIONS

A “vector” as used herein refers to a macromolecule or association of macromolecules that comprises or associates with a polynucleotide and which can be used to mediate delivery of the polynucleotide to a cell. Illustrative vectors include, for example, plasmids, viral vectors, liposomes, and other gene delivery vehicles.

The term “AAV” is an abbreviation for adeno-associated virus, and may be used to refer to the virus itself or derivatives thereof. The term covers all subtypes and both naturally occurring and recombinant forms, except where required otherwise. The term “AAV” includes AAV type 1 (AAV-1), AAV type 2 (AAV-2), AAV type 3 (AAV-3), AAV type 4 (AAV-4), AAV type 5 (AAV-5), AAV type 6 (AAV-6), AAV type 7 (AAV-7), AAV type 8 (AAV-8), avian AAV, bovine AAV, canine AAV, equine AAV, primate AAV, non-primate AAV, and ovine AAV. “Primate AAV” refers to AAV that infect primates, “non-primate AAV” refers to AAV that infect non-primate mammals, “bovine AAV” refers to AAV that infect bovine mammals, etc.

An “AAV virus” or “AAV viral particle” or “rAAV vector particle” refers to a viral particle composed of at least one AAV capsid protein (typically by all of the capsid proteins of a wild-type AAV) and an encapsidated polynucleotide rAAV vector. If the particle comprises a heterologous polynucleotide (i.e. a polynucleotide other than a wild-type AAV genome such as a transgene to be delivered to a mammalian cell), it is typically referred to as a “rAAV vector particle” or simply a “rAAV vector”. Thus, production of rAAV particle necessarily includes production of rAAV vector, as such a vector is contained within a rAAV particle.

The term “replication defective” as used herein relative to an AAV viral vector of the invention means the AAV vector cannot independently replicate and package its genome. For example, when a cell of a subject is infected with rAAV virions, the heterologous gene is expressed in the infected cells, however, due to the fact that the infected cells lack AAV rep and cap genes and accessory function genes, the rAAV is not able to replicate further.

An “AAV variant” or “AAV mutant” as used herein refers to a viral particle composed of: a) a variant AAV capsid protein, where the variant AAV capsid protein comprises at least one amino acid difference (e.g., amino acid substitution, amino acid insertion, amino acid deletion) relative to a corresponding parental AAV capsid protein, and where the variant capsid protein confers increased infectivity of a retinal cell compared to the infectivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein, where the AAV capsid protein does not comprise an amino acid sequence present in a naturally occurring AAV capsid protein; and b) a heterologous nucleic acid comprising a nucleotide sequence encoding a heterologous gene product.

The abbreviation “rAAV” refers to recombinant adeno-associated virus, also referred to as a recombinant AAV vector (or “rAAV vector”). A “rAAV vector” as used herein refers to an AAV vector comprising a polynucleotide sequence not of AAV origin (i.e., a polynucleotide heterologous to AAV), typically a sequence of interest for the genetic transformation of a cell. In general, the heterologous polynucleotide is flanked by at least one, and generally by two AAV inverted terminal repeat sequences (ITRs). The term rAAV vector encompasses both rAAV vector particles and rAAV vector plasmids.

As used herein, the term “gene” or “coding sequence” refers to a nucleotide sequence in vitro or in vivo that encodes a gene product. In some instances, the gene consists or consists essentially of coding sequence, that is, sequence that encodes the gene product. In other instances, the gene comprises additional, non-coding, sequence. For example, the gene may or may not include regions preceding and following the coding region, e.g. 5′ untranslated (5′ UTR) or “leader” sequences and 3′ UTR or “trailer” sequences, as well as intervening sequences (introns) between individual coding segments (exons).

As used herein, a “therapeutic gene” refers to a gene that, when expressed, confers a beneficial effect on the cell or tissue in which it is present, or on a mammal in which the gene is expressed. Examples of beneficial effects include amelioration of a sign or symptom of a condition or disease, prevention or inhibition of a condition or disease, or conferral of a desired characteristic. Therapeutic genes include genes that correct a genetic deficiency in a cell or mammal.

As used herein, a transgene is a gene that is delivered to a cell by a vector.

As used herein, the term “gene product” refers to the desired expression product of a polynucleotide sequence such as a polypeptide, peptide, protein or interfering RNA including short interfering RNA (siRNA), miRNA or small hairpin RNA (shRNA).

As used herein, the terms “polypeptide,”“peptide,” and “protein” refer to polymers of amino acids of any length. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, phosphorylation, or conjugation with a labeling component.

By “comprising” it is meant that the recited elements are required in, for example, the composition, method, kit, etc., but other elements may be included to form the, for example, composition, method, kit etc. within the scope of the claim. For example, an expression cassette “comprising” a gene encoding a therapeutic polypeptide operably linked to a promoter is an expression cassette that may include other elements in addition to the gene and promoter, e.g. poly-adenylation sequence, enhancer elements, other genes, linker domains, etc.

By “consisting essentially of”, it is meant a limitation of the scope of the, for example, composition, method, kit, etc., described to the specified materials or steps that do not materially affect the basic and novel characteristic(s) of the, for example, composition, method, kit, etc. For example, an expression cassette “consisting essentially of” a gene encoding a therapeutic polypeptide operably linked to a promoter and a polyadenylation sequence may include additional sequences, e.g. linker sequences, so long as they do not materially affect the transcription or translation of the gene. As another example, a variant, or mutant, polypeptide fragment “consisting essentially of” a recited sequence has the amino acid sequence of the recited sequence plus or minus about 10 amino acid residues at the boundaries of the sequence based upon the full length naïve polypeptide from which it was derived, e.g. 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 residue less than the recited bounding amino acid residue, or 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 residues more than the recited bounding amino acid residue.

By “consisting of”, it is meant the exclusion from the composition, method, or kit of any element, step, or ingredient not specified in the claim. For example, an expression cassette “consisting of” a gene encoding a therapeutic polypeptide operably linked to a promoter, and a polyadenylation sequence consists only of the promoter, polynucleotide sequence encoding the therapeutic polypeptide, and polyadenlyation sequence. As another example, a polypeptide “consisting of” a recited sequence contains only the recited sequence.

As used herein, the terms “sequence identity,” e.g. “% sequence identity,” refers to the degree of identity between two or more polynucleotides when aligned using a nucleotide sequence alignment program; or between two or more polypeptide sequences when aligned using an amino acid sequence alignment program. Similarly, the term “identical” or percent “identity” when used herein in the context of two or more nucleotide or amino acid sequences refers to two sequences that are the same or have a specified percentage of amino acid residues or nucleotides when compared and aligned for maximum correspondence, for example as measured using a sequence comparison algorithm, e.g. the Smith-Waterman algorithm, etc., or by visual inspection. For example, the percent identity between two amino acid sequences may be determined using the Needleman and Wunsch, (1970, J. Mol. Biol. 48: 444-453) algorithm which has been incorporated into the GAP program in the GCG software package, using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. As another example, the percent identity between two nucleotide sequences may be determined using the GAP program in the GCG software package, using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used unless otherwise specified) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5. The percent identity between two amino acid or nucleotide sequences can also be determined using the algorithm of E. Meyers and W. Miller (1989, Cabios, 4: 11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The nucleic acid and protein sequences described herein can be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al., (1990, J. Mol. Biol, 215: 403-10). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997, Nucleic Acids Res, 25: 3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

The term “% homology” is used interchangeably herein with the term “% identity” herein and refers to the level of nucleic acid or amino acid sequence identity between two or more aligned sequences, when aligned using a sequence alignment program. For example, as used herein, 80% homology means the same thing as 80% sequence identity determined by a defined algorithm, and accordingly a homologue of a given sequence has greater than 80% sequence identity over a length of the given sequence.

As used herein, the terms “complement” and “complementary” refer to two antiparallel nucleotide sequences capable of pairing with one another upon formation of hydrogen bonds between the complementary base residues in the antiparallel nucleotide sequences. For example, an shRNA might be complementary, i.e. 100% complementary, or substantially complementary, e.g. 80% complementary, 85% complementary, 90% complementary, 95% complementary, 98% complementary, or more to a target sequence. The term “expression” as used herein encompasses the transcription and/or translation of an endogenous gene, a transgene or a coding sequence in a cell.

An “expression vector” as used herein encompasses a vector, e.g. plasmid, minicircle, viral vector, liposome, and the like as discussed above or as known in the art, comprising a polynucleotide which encodes a gene product of interest, and is used for effecting the expression of a gene product in an intended target cell. An expression vector also comprises control elements operatively linked to the encoding region to facilitate expression of the gene product in the target. The combination of control elements, e.g. promoters, enhancers, UTRs, miRNA targeting sequences, etc., and a gene or genes to which they are operably linked for expression is sometimes referred to as an “expression cassette.” Many such control elements are known and available in the art or can be readily constructed from components that are available in the art.

A “promoter” as used herein encompasses a DNA sequence that directs the binding of RNA polymerase and thereby promotes RNA synthesis, i.e., a minimal sequence sufficient to direct transcription. Promoters and corresponding protein or polypeptide expression may be ubiquitous, meaning strongly active in a wide range of cells, tissues and species or cell-type specific, tissue-specific, or species specific. Promoters may “constitutive,” meaning continually active, or “inducible,” meaning the promoter can be activated or deactivated by the presence or absence of biotic or abiotic factors. Also included in the nucleic acid constructs or vectors of the invention are enhancer sequences that may or may not be contiguous with the promoter sequence. Enhancer sequences influence promoter-dependent gene expression and may be located in the 5′ or 3′ regions of the native gene.

An “enhancer” as used herein encompasses a cis-acting element that stimulates or inhibits transcription of adjacent genes. An enhancer that inhibits transcription also is termed a “silencer”. Enhancers can function (i.e., can be associated with a coding sequence) in either orientation, over distances of up to several kilobase pairs (kb) from the coding sequence and from a position downstream of a transcribed region.

A “termination signal sequence” as used herein encompasses any genetic element that causes RNA polymerase to terminate transcription, such as for example a polyadenylation signal sequence.

A “polyadenylation signal sequence” as used herein encompasses a recognition region necessary for endonuclease cleavage of an RNA transcript that is followed by the polyadenylation consensus sequence AATAAA. A polyadenylation signal sequence provides a “polyA site”, i.e. a site on a RNA transcript to which adenine residues will be added by post-transcriptional polyadenylation.

As used herein, the terms “operatively linked” or “operably linked” refers to a juxtaposition of genetic elements, e.g. promoter, enhancer, termination signal sequence, polyadenylation sequence, etc., wherein the elements are in a relationship permitting them to operate in the expected manner. For instance, a promoter is operatively linked to a coding region if the promoter helps initiate transcription of the coding sequence. There may be intervening residues between the promoter and coding region so long as this functional relationship is maintained. As used herein, the term “heterologous” means derived from a genotypically distinct entity from that of the rest of the entity to which it is being compared. For example, a polynucleotide introduced by genetic engineering techniques into a plasmid or vector derived from a different species is a heterologous polynucleotide. As another example, a promoter removed from its native coding sequence and operatively linked to a coding sequence with which it is not naturally found linked is a heterologous promoter. Thus, for example, an rAAV that includes a heterologous nucleic acid encoding a heterologous gene product is an rAAV that includes a nucleic acid not normally included in a naturally-occurring, wild-type AAV, and the encoded heterologous gene product is a gene product not normally encoded by a naturally-occurring, wild-type AAV.

The term “endogenous” as used herein with reference to a nucleotide molecule or gene product refers to a nucleic acid sequence, e.g. gene or genetic element, or gene product, e.g. RNA, protein, that is naturally occurring in or associated with a host virus or cell.

The term “native” as used herein refers to a nucleotide sequence, e.g. gene, or gene product, e.g. RNA, protein, that is present in a wildtype virus or cell. The term “variant” as used herein refers to a mutant of a reference polynucleotide or polypeptide sequence, for example a native polynucleotide or polypeptide sequence, i.e. having less than 100% sequence identity with the reference polynucleotide or polypeptide sequence. Put another way, a variant comprises at least one amino acid difference (e.g., amino acid substitution, amino acid insertion, amino acid deletion) relative to a reference polynucleotide sequence, e.g. a native polynucleotide or polypeptide sequence. For example, a variant may be a polynucleotide having a sequence identity of 70% or more with a full length native polynucleotide sequence, e.g. an identity of 75% or 80% or more, such as 85%, 90%, or 95% or more, for example, 98% or 99% identity with the full length native polynucleotide sequence. As another example, a variant may be a polypeptide having a sequence identity of 70% or more with a full length native polypeptide sequence, e.g. an identity of 75% or 80% or more, such as 85%, 90%, or 95% or more, for example, 98% or 99% identity with the full length native polypeptide sequence. Variants may also include variant fragments of a reference, e.g. native, sequence sharing a sequence identity of 70% or more with a fragment of the reference, e.g. native, sequence, e.g. an identity of 75% or 80% or more, such as 85%, 90%, or 95% or more, for example, 98% or 99% identity with the native sequence.

As used herein, the terms “biological activity” and “biologically active” refer to the activity attributed to a particular biological element in a cell. For example, the “biological activity” of an “immunoglobulin”, “antibody” or fragment or variant thereof refers to the ability to bind an antigenic determinant and thereby facilitate immunological function. As another example, the biological activity of a polypeptide or functional fragment or variant thereof refers to the abilty of the polypeptide or functional fragment or variant thereof to carry out its native functions of, e.g., binding, enzymatic activity, etc. As a third example, the biological activity of a gene regulatory element, e.g. promoter, enhancer, kozak sequence, and the like, refers to the ability of the regulatory element or functional fragment or variant thereof to regulate, i.e. promote, enhance, or activate the translation of, respectively, the expression of the gene to which it is operably linked.

The terms “administering” or “introducing”, as used herein refer to delivery of a vector for recombinant protein expression to a cell, to cells and/or organs of a subject, or to a subject. Such administering or introducing may take place in vivo, in vitro or ex vivo. A vector for expression of a gene product may be introduced into a cell by transfection, which typically means insertion of heterologous DNA into a cell by physical means (e.g., calcium phosphate transfection, electroporation, microinjection or lipofection); infection, which typically refers to introduction by way of an infectious agent, i.e. a virus; or transduction, which typically means stable infection of a cell with a virus or the transfer of genetic material from one microorganism to another by way of a viral agent (e.g., a bacteriophage).

“Transformation” is typically used to refer to bacteria comprising heterologous DNA or cells which express an oncogene and have therefore been converted into a continuous growth mode such as tumor cells. A vector used to “transform” a cell may be a plasmid, virus or other vehicle.

Typically, a cell is referred to as “transduced”, “infected”; “transfected” or “transformed” dependent on the means used for administration, introduction or insertion of heterologous DNA (i.e., the vector) into the cell. The terms “transduced”, “transfected” and “transformed” may be used interchangeably herein regardless of the method of introduction of heterologous DNA.

The term “host cell”, as used herein refers to a cell which has been transduced, infected, transfected or transformed with a vector. The vector may be a plasmid, a viral particle, a phage, etc. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art. It will be appreciated that the term “host cell” refers to the original transduced, infected, transfected or transformed cell and progeny thereof.

The terms “treatment”, “treating” and the like are used herein to generally mean obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof, e.g. reducing the likelihood that the disease or symptom thereof occurs in the subject, and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment” as used herein covers any treatment of a disease in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. The therapeutic agent may be administered before, during or after the onset of disease or injury. The treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, is of particular interest. Such treatment is desirably performed prior to complete loss of function in the affected tissues. The subject therapy will desirably be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.

The terms “individual,”“host,”“subject,” and “patient” are used interchangeably herein, and refer to a mammal, including, but not limited to, human and non-human primates, including simians and humans; mammalian sport animals (e.g., horses); mammalian farm animals (e.g., sheep, goats, etc.); mammalian pets (dogs, cats, etc.); and rodents (e.g., mice, rats, etc.).

The various compositions and methods of the invention are described below. Although particular compositions and methods are exemplified herein, it is understood that any of a number of alternative compositions and methods are applicable and suitable for use in practicing the invention. It will also be understood that an evaluation of the expression constructs and methods of the invention may be carried out using procedures standard in the art.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of cell biology, molecular biology (including recombinant techniques), microbiology, biochemistry and immunology, which are within the scope of those of skill in the art. Such techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, second edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology” (D. M. Weir & C. C. Blackwell, eds.); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994); and “Current Protocols in Immunology” (J. E. Coligan et al., eds., 1991), each of which is expressly incorporated by reference herein.

Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. The present invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.

The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term “about” meaning within an acceptable error range for the particular value should be assumed.

All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. It is understood that the present disclosure supersedes any disclosure of an incorporated publication to the extent there is a contradiction.

It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely”, “only” and the like in connection with the recitation of claim elements, or the use of a “negative” limitation.

The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing-herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art and the practice of the present invention will employ, conventional techniques of microbiology and recombinant DNA technology, which are within the knowledge of those of skill of the art.

DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides polynucleotide cassettes and expression vectors for the expression of a gene in cone cells. Also provided are methods for the use of these compositions in promoting the expression of a gene in cone cells, for example, in an individual, e.g. for the treatment or prophylaxis of a cone cell disorder. These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the compositions and methods as more fully described below.

Compositions

In some aspects of the disclosure, compositions are provided for the expression of a transgene in cone cells. By a “cone cell”, also referred to herein as a “cone photoreceptor” or “cone”, it is meant the subtype of photoreceptor cells in the retina of the eye that function best in relatively bright light. Cones are sensitive to specific wavelengths of light and hence support the perception of color. In addition, cones respond faster to stimuli than rod photoreceptors, perceiving finer detail and more rapid changes in images than rods, and hence, support high acuity vision for activities where visual detail is of primary importance such as reading and driving. Cones are readily identifiable in cross-sections of the retina by the cone-like shape of their outer segments. They are also readily identifiable by their location in the retina, the highest density of cones existing at the 1.5 mm depression located in the center of the macula of the retina, called the “fovea centralis” or “foveal pit”.

In some embodiments of the disclosure, the composition that provides for the expression of a transgene in cone cells is a polynucleotide cassette. By a “polynucleotide cassette” it is meant a polynucleotide sequence comprising two or more polynucleotide sequences, e.g. regulatory elements, translation initiation sequences, coding sequences, termination sequences, etc., typically in operably linkage to one another. Likewise, by a “polynucleotide cassette for the expression of a transgene in a cone cell,” it is meant a combination of two or more polynucleotide sequences, e.g. promoter, enhancer, 5′UTR, translation initiation sequence, coding sequence, termination sequences, etc. that promotes the expression of the transgene in a cone cell.

For example, in some embodiments, the polynucleotide cassette comprises:

    • (a) a promoter region, wherein the promoter region promotes the expression of a coding sequence in cone cells; and
    • (b) a coding sequence operatively linked to the promoter region.

      As another example, in some embodiments, the polynucleotide cassette comprises:

    • (a) a promoter region, wherein the promoter region promotes the expression of a coding sequence in retinal cone cells;
    • (b) a translation initiation sequence; and
    • (c) a coding sequence operatively linked to the promoter region.

      As a third example, in some embodiments, the polynucleotide cassette comprises:

    • (a) a promoter region, wherein the promoter region promotes the expression of a coding sequence in retinal cone cells;
    • (b) a 5′ untranslated region;
    • (c) a translation initiation sequence; and
    • (d) a coding sequence operatively linked to the promoter region.

      As a fourth example, in some embodiments, the polynucleotide cassette comprises:

    • (a) a promoter region, wherein the promoter region promotes the expression of a coding sequence in retinal cone cells;
    • (b) a 5′ untranslated region;
    • (c) an intron;
    • (d) a translation initiation sequence; and
    • (e) a coding sequence operatively linked to the promoter region.

      As a fifth example, in some embodiments, the polynucleotide cassette comprises:

    • (a) a promoter region, wherein the promoter region promotes the expression of a coding sequence in retinal cone cells;
    • (b) a 5′ untranslated region;
    • (c) an intron;
    • (d) a translation initiation sequence; and
    • (e) a polyadenylation sequence.

In some embodiments, the polynucleotide cassettes of the present disclosure provide for enhanced expression of a transgene in cone cells. As demonstrated by the working examples of the present disclosure, the present inventors have discovered a number of polynucleotide elements, i.e. improved elements as compared to those known in the art, which individually and synergistically provide for the enhanced expression of transgenes in cone cells. By “enhanced” it is meant that expression of the transgene is increased, augmented, or stronger, in cone cells carrying the polynucleotide cassettes of the present disclosure relative to in cone cells carrying the transgene operably linked to comparable regulatory elements, e.g. as known in the art. Put another way, expression of the transgene is increased, augmented, or stronger, from the polynucleotide cassettes of the present disclosure relative to expression from a polynucleotide cassette not comprising the one or more optimized elements of the present disclosure, i.e. a reference control. For example, expression of the transgene is enhanced, or augmented, or stronger, in cone cells comprising a polynucleotide cassette comprising a promoter disclosed herein than in cone cells that carry the transgene operably linked to a different promoter, e.g. as known in the art. As another example, expression of the transgene is enhanced, or increased, augmented, or stronger, in cone cells comprising a polynucleotide cassette comprising an enhancer sequence disclosed herein than in cone cells that carry the transgene operably linked to a different enhancer sequence. As another example, expression of the transgene is enhanced, or increased, augmented, or stronger, in cone cells comprising a polynucleotide cassette encoding a 5′UTR disclosed herein than in cone cells that carry the transgene operably linked to a different 5′UTR coding sequence. As another example, expression of the transgene is enhanced, or increased, augmented, or stronger, in cone cells comprising a polynucleotide cassette comprising an intron as disclosed herein than in cone cells that carry the transgene operably linked to a different intronic sequence as known in the art. Exemplary sequences comprising elements (e.g., promoters, enhancer sequences, 5′UTRs, and intons) that may be used as references for comparison include sequences encompassed by the native L-opsin promoter (SEQ ID NO:1) and variants thereof, sequences encompassed by the synthetic promoter pR2.1 (SEQ ID NO:50) and variants thereof (e.g. pR1.7, pR1.5, pR1.1) as disclosed in, e.g. US Application No. 2013/0317091, and sequences encompassed by the IRBP/GNAT2 promoter (US Applicaton No. 2014/0275231).

Without wishing to be bound by theory, enhanced expression of a transgene in cells is believed to be due to a faster build-up of gene product in the cells or a more stable gene product in the cells. Thus, enhanced expression of a transgene by the polynucleotide cassettes of the subject disclosure may be observed in a number of ways. For example, enhanced expression may be observed by detecting the expression of the transgene following contact of the polynucleotide cassette to the cone cells sooner, e.g. 7 days sooner, 2 weeks sooner, 3 weeks sooner, 4 weeks sooner, 8 weeks sooner, 12 weeks sooner, or more, than expression would be detected if the transgene were operably linked to comparable regulatory elements, e.g. as known in the art. Enhanced expression may also be observed as an increase in the amount of gene product per cell. For example, there may be a 2-fold increase or more, e.g. a 3-fold increase or more, a 4-fold increase or more, a 5-fold increase or more, or a 10-fold increase or more in the amount of gene product per cone cell. Enhanced expression may also be observed as an increase in the number of cone cells that express detectable levels of the transgene carried by the polynucleotide cassette. For example, there may be a 2-fold increase or more, e.g. a 3-fold increase or more, a 4-fold increase or more, a 5-fold increase or more, or a 10-fold increase or more in the number of cone cells that express detectable levels of the transgene. As another example, the polynucleotide of the present invention may promote detectable levels of the transgene in a greater percentage of cells as compared to a conventional polynucleotide cassette; for example, where a conventional cassette may promote detectable levels of transgene expression in, for example, less than 5% of the cone cells in a certain region, the polynucleotide of the present invention promotes detectable levels of expression in 5% or more of the cone cells in that region; e.g. 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, or 45% or more, in some instances 50% or more, 55% or more; 60% or more, 65% or more, 70% or more, or 75% or more, for example 80% or more, 85% or more, 90% or more, or 95% or more of the cone cells that are contacted, will express detectable levels of gene product. Enhanced expression may also be observed as an alteration in the viability and/or function of the cone cells, e.g. as measured using assessment tools such as fundus photography, OCT, adaptive optics, cERG, color vision tests, visual acuity tests, and the like, as known in the art and as described herein.

The polynucleotide cassettes of the present disclosure typically comprise a promoter region. Any suitable promoter region or promoter sequence therein can be used in the subject polynucleotide cassettes, so long as the promoter region promotes expression of a coding sequence in retinal cone cells. In some embodiments, the promoter specifically promotes expression of the gene in mammalian retinal cone cell; more preferably primate retinal cone cells; more preferably in Catarrhini retinal cone cells; even more preferably in human retinal cone cells. By “specifically” it is meant that the promoter predominately promotes expression of the gene in the target cells as compared to other cell types. Thus, for example, when a promoter region that specifically promotes expression in cone cells is employed, more than 50% of the expression, for example, at least any of 60%, 65%, 70% or 75% or more of the expression, e.g. at least any of 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97%, 98%, 99%, 99.5%, or more of expression of the gene after delivery of the subject polunucleotide cassette to the eye will be in cone cells.

Exemplary suitable promoter regions include the promoter region for any cone-specific gene, such as a 492 L-opsin promoter region (SEQ ID NO:1), a 491 L-opsin promoter region (SEQ ID NO:53), a 496 L-opsin promoter region (SEQ ID NO:79), an M-opsin promoter region (SEQ ID NO:2, SEQ ID NO:54), a minimal M-opsin promoter region (SEQ ID NO:55, SEQ ID NO:93), a core M-opsin promoter sequence as disclosed for the first time herein (SEQ ID NO:80), an S-opsin promoter region (SEQ ID NO:3), an hRK promoter region, and a cone arrestin promoter region; or portions or variants thereof which retain activity promoting the expression of a gene in cone cells. Nonlimiting examples of portions, or fragments, of promoter regions that find use in the subject polynucleotide cassetttes include promoter sequence immediately upstream of the 5′UTR, and canonical binding sequences for transcription factors as known in the art. Such portions, or fragments, may be readily determined using any convenient method as known in the art or described herein. For example, the promoter sequence immediately upstream of the 5′UTR in SEQ ID NO:54 and SEQ ID NO:55 may readily determined by in silico evaluation of the sequence as consisting essentially of nucleotides 1-406 of SEQ ID NO:54 or nucleotides 1-154 of SEQ ID NO:55 using publicly available tools such as, e.g. the UCSC genome BLAT browser; or by empirical testing through operable linkage with a reporter gene and introduction into cone cells, e.g. as described in the working examples herein. Shorter promoter sequences are, in some embodiments, preferable to longer promoter sequences, as they provide for more space in the vector for other nucleotide elements. In some embodiments, the promoter region is less than 492 base pairs in length. For example, in some embodiments, the functional fragment does not comprise nucleotides 1-10 or more of SEQ ID NO:1, for example, the functional fragment does not comprise nucleotides 1-20 or more, nucleotides 1-30 or more, nucleotides 1-40 or more, nucleotides 1-50 or more of SEQ ID NO:1, e.g. nucleotides 1-60 or more, nucleotides 1-70 or more, nucleotides 1-80 or more, nucleotides 1-90 or more, nucleotides 1-100 or more of SEQ ID NO:1, in some instances nucleotides 1-120 or more, nucleotides 1-140 or more, nucleotides 1-160 or more, nucleotides 1-180 or more, nucleotides 1-200 or more, nucleotides 1-220 or more, nucleotides 1-240 or more, or about nucleotides 1-260 of SEQ ID NO:1. Any suitable method for identifying a promoter region capable of driving expression in mammalian or primate cone cells can be used to identify promoter regions and promoter sequences therein that find use in the polynucleotide cassettes of the present disclosure.

In some embodiments, the promoter region of the subject polynucleotide cassette comprises one of the promoter regions disclosed herein, e.g. a 492 L-opsin promoter region (SEQ ID NO:1), a 491 L-opsin promoter region (SEQ ID NO:53), a 496 L-opsin promoter region (SEQ ID NO:79), an M opsin promoter region (SEQ ID NO:2, SEQ ID NO:54), a minimal M opsin promoter region (SEQ ID NO:55, SEQ ID NO:93), the core M-opsin promoter sequence disclosed herein (SEQ ID NO:80), or the S opsin promoter region (SEQ ID NO:3), or a functional fragment or variant thereof, e.g. a sequence having an identity of 75% or more, e.g. 80% or more, 85% or more, 90% or more, or 95% or more, (e.g., 80%, 85%, 90% Or 95%), to an aforementioned sequence or functional fragment thereof. In some embodiments, the promoter sequence of the subject polynucleotide cassette consists essentially of one of the promoter regions disclosed herein, i.e. SEQ ID NO:1, SEQ ID NO:53, SEQ ID NO:79, SEQ ID NO:2, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:93, SEQ ID NO:80, or SEQ ID NO:3, or a functional fragment or variant thereof, e.g. a sequence having an identity of 75% or more, e.g. 80%, or more 85% or more, 90% or more, or 95% or more, (e.g., 80%, 85%, 90% Or 95%), to the full length of an aforementioned sequence plus or minus 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides, or functional fragment thereof. In some embodiments, the promoter region of the subject polynucleotide cassette consists of one of the promoter regions disclosed herein, i.e. SEQ ID NO:1, SEQ ID NO:53, SEQ ID NO:79, SEQ ID NO:2, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:93, SEQ ID NO:80, or SEQ ID NO:3, or a functional fragment or variant thereof, e.g. a sequence having an identity of 75% or more, e.g. 80%, 85%, 90%, 95% or more, to the full length of an aforementioned sequence or functional fragment thereof. In certain embodiments, the promoter region consists essentially of SEQ ID NO:74. In some such embodiments, the promoter sequence consists essentially of SEQ ID NO:80. In some embodiments, the promoter results in enhanced expression in cone cells compared to other promoters known in the art, e.g., the synthetic promoters pR2.1, pR1.7,pR1.1, and IRBP/GNAT2.

In some embodiments, the polynucleotide cassette further comprises an enhancer element. Enhancers are nucleic acid elements known in the art to enhance transcription, and can be located anywhere in association with the gene they regulate, e.g. upstream, downstream, within an intron, etc. Any enhancer element can be used in the polynucleotide cassettes and gene therapy vectors of the present disclosure, so long as it enhances expression of the gene when used in combination with the promoter. In a preferred embodiment, the enhancer element is specific for retinal cone cells; more preferably, it is specific for primate retinal cone cells; more preferably in Catarrhini retinal cone cells; even more preferably in human retinal cone cellsBy “specifically” it is meant that the enhancer predominately enhances expression of the gene in the target cells compared to other cell types. Thus, for example, when an enhancer that specifically enhances expression in cone cells is employed, more than 50% of the expression, for example, at least any of 60%, 65%, 70%, 75% or more of the expression, e.g., at least 80%, and preferably 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97%, 98%, 99%, 99.5%, or more of expression of the gene after delivery of the vector to the eye will be in cone cells.

Exemplary enhancer regions that find use in the polynucleotide cassettes of the present disclosure include those that comprise, consist essentially of, or consist of the enhancer region for any cone-specific gene or fragments or variants thereof which retain enhancer activity. For example, the L/M minimal opsin enhancer, referred to as the Locus Control Region (LCR) (Wang et al., 1992. Neuron 9: 429-440) (SEQ ID NO:52) can be used to enhance gene expression in cone cells; its absence results in blue cone monochromacy (Nathans et al., 1989; Science, 245: 831-838). The LCR has been shown to be useful in gene therapy, for example with AAV vectors (Li et al., Vision Research 48(2008): 332-338). Furthermore, a functional fragment consisting essentially of a 36 bp “core” LCR sequence has been identified that is necessary and sufficient for expression from the opsin promoter in cone cells (Komaromy et al. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther. 2008; 15(14):1049-55) (SEQ ID NO:51). In some embodiments, the enhancer of the polynucleotide cassette comprises SEQ ID NO:51 or SEQ ID NO:52. In certain embodiments, the enhancer of the polynucleotide cassette consists essentially of SEQ ID NO:51 or SEQ ID NO:52.

L/M enhancer elements of 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more nucleotides that comprise one or more copies of the L/M minimal opsin enhancer, and the full L/M opsin enhancer, or other portions or variants thereof which retain activity enhancing expression of genes in a cone-specific manner find use in the present compositions. Any suitable method for identifying enhancer sequences capable of driving expression in primate cone cells can be used to identify such enhancers, as will be understood by those of skill in the art based on the teachings herein.

The length of the promoter and enhancer regions can be of any suitable length for their intended purpose, and the spacing between the promoter and enhancer regions can be any suitable spacing to promote cone-specific expression of the gene product. In various preferred embodiments, the enhancer is located 0-1500; 0-1250; 0-1000; 0-750; 0-600; 0-500; 0-400; 0-300; 0-200; 0-100; 0-90; 0-80; 0-70; 0-60; 0-50; 0-40; 0-30; 0-20; or 0-10 nucleotides upstream of the promoter. The promoter can be any suitable distance upstream of the encoded gene.

In some embodiments, the subject polynucleotide cassette comprises a sequence encoding a 5′ untranslated region, i.e. polynucleotide sequence encoding an untranslated region 5′ to the coding sequence, also called the 5′UTR. In an expression cassette, the 5′UTR is known in the art as the sequence between the transcription initiation site and the Kozak sequence where protein translation begins. Secondary mRNA structure of the 5′UTR is known to affect transcription levels. Specifically, for enhanced gene expression, the sequence of the 5′UTR region in the present invention is selected to minimize or avoid secondary structures and upstream AUG (uAUG) codons which are known to decrease translation efficiency due to inefficient ribosome scanning and false translational starts (Kozak, 1995. PNAS 92:2662). See Davuluri et al., Genome Research, 2000: 10 (11); 1807-1816. For example, the 5′UTR sequence from the human gene HSP70 (SEQ ID NO:58) has been identified for its unusual ability to enhance mRNA translation, possibly due to an IRES mechanism (Rubtsova et al., 2003. PNAS 278(25): 22350-22356; Vivinus et al, 2001. Eur J Biochem. 268: 1908-1917). Any 5′ UTR can be used, but ideally the sequence of the 5′UTR has minimal secondary mRNA structure and upstream AUG sequences. Put another way, in some embodiments, the sequence between the transcription initiation site and the translation initiation site of the polynucleotide cassette does not contain the polynucleotide ATG. In some embodiments, the 5′ UTR comprises, consists essentially, or consists of SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, or SEQ ID NO:89; or a functional fragment or variant thereof, for example, a polynucleotide sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, and SEQ ID NO:89, or a fragment thereof. In some embodiments, some or all of the 5′UTR sequence is comprised by a promoter region as disclosed in, for example, SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, or SEQ ID NO:79. In other embodiments, the 5′UTR is not comprised by the promoter region; see, e.g. the core promoter sequence SEQ ID NO:84, which does not encode for 5′ UTR sequence. In some embodiments, the 5′UTR sequence is heterologous to the promoter sequence. In various preferred embodiments, the 3′ end of the UTR is 0-20; 0-15; 0-10; 0-9; 0-8; 0-7; 0-6; or 0-5 nucleotides upstream of the coding sequence, and its 5′ end is 0-20; 0-15; 0-10; 0-9; 0-8; 0-7; 0-6; or 0-5 nucleotides downstream of the proximal promoter region. In some embodiments, the 5′UTR element results in enhanced expression in cone cells compared to other 5′UTRs known in the art, e.g., the 5′UTRs comprised by the synthetic promoters pR2.1, pR1.7, pR1.1, and IRBP/GNAT2.

In some embodiments, the subject polynucleotide cassette further comprises an intron comprising a splice donor/acceptor region. In some embodiments, the intron is located downstream of the promoter region and is located upstream of the translation initiation sequence of the gene, i.e. the intron is located within the 5′UTR. In other embodiments, the intron is located downstream of the translation initiation sequence of the gene, i.e. the intron is located within the coding sequence. As is generally known in the art, introns are DNA polynucleotides that are transcribed into RNA and removed during mRNA processing through intron splicing. Polynucleotide cassettes containing introns generally have higher expression than those without introns. Introns can stimulate expression between 2- and 500-fold (Buchman and Berg, 1988. Mol Cel Bio, 8(10): 4395). Efficiently spliced introns contain a pre-splice donor, branchpoint, and Py rich region (Senapathy et al, 1990; Meth. Enzymol. 183, 252-78; Wu and Krainer, 1999; Mol Cell Biol 19(5):3225-36). 5′ introns are generally more efficient compared to introns at the 3′ end (Huang and Gorman, 1990; Mol Cell Bio, 10:1805). Although introns are known generally to increase the level of gene expression, the specific increase (if any) of a given cDNA is empirical and must be tested; for example the chimeric intron in the pSI vector increases CAT expression by 21-fold, but luciferase expression by only 3-fold.

Any intron can be used in the subject polynucleotide cassettes, so long as it comprises a splice donor/acceptor region recognized in mammalian or in primate cone cells, so that the intron can be spliced out of the resulting mRNA product. In one embodiment, the intron comprises, consists essentially of, or consists of an SV40 intron according to SEQ ID NO:5. In another embodiment, the intron comprises, consists essentially of, or consists of the chimeric intron from pSI (SEQ ID NO:60) or a variant thereof. In another embodiment, the intron comprises, consists essentially of, or consists of the CMV intron A or a variant thereof. In yet another embodiment, the intron comprises, consists essentially of, or consists of the pR2.1 intron (SEQ ID NO:59) or a variant thereof, or alternatively, the rabbit or human beta globin intron (Xu et al, 2001, Gene 272:149; Xu et al. 2002; J Control Rel 81:155) or a variant thereof. In some such embodiments, the intron comprises a sequence having a sequence identity of 85% or more to a sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:59, and SEQ ID NO:60. Typically, the intron is heterologous to the promoter region and/or the 5′UTR.

In some embodiments, the intron resides within a 5′UTR. In other words, the DNA sequence encoding the 5′UTR is interrupted by intronic DNA sequence. For example, the coding sequence for the 5′UTR that is SEQ ID NO:84 may be encoded in two parts, e.g. SEQ ID NO:85 and SEQ ID NO:86, with an intronic sequence between them. As another example, the coding sequences for the 5′UTR that is SEQ ID NO:88 may be encoded in two parts, e.g. SEQ ID NO:89 and SEQ ID NO:73, with an intronic sequence between them. In various embodiments, the 3′ end of the intron is 0-20; 0-15; 0-10; 0-9; 0-8; 0-7; 0-6; or 0-5 nucleotides upstream of the gene, and its 5′ end is 0-20; 0-15; 0-10; 0-9; 0-8; 0-7; 0-6; or 0-5 nucleotides downstream of the proximal promoter region. In other embodiments, the intron resides within the coding sequene of the gene.

In some embodiments, the polynucleotides cassettes of the present disclosure comprise a translation initiation sequence, also know as a “Kozak sequence” or “Kozak translation initiation sequence. This is the nucleic acid sequence where the ribosome attaches and translation begins. Examples include ACCATGG (Kozak, 1986. Cell, 44:283-292) and (GCC)GCC(A/G)CCATGG (Kozak, 1987. Nucl Acid Res; 15(20): 8125) (SEQ ID NO:73). Any suitable Kozak sequence can be used in the polynucleotide cassette, preferably selected to increase expression of the coding sequence in retinal cone cells. In one embodiment, the translation initiation sequence comprises SEQ ID NO:72. In an alternative embodiment, the translation initiation sequence comprises SEQ ID NO:73. In some embodiments, the Kozak element results in enhanced expression in cone cells compared to other Kozak sequences known in the art, e.g., the Kozak sequences comprised by the synthetic promoters pR2.1, pR1.7, pR1.1, and IRBP/GNAT2.

In some aspects of the present invention, the subject polynucleotide cassettes are used to deliver a gene to cone cells of an animal, e.g. to determine the effect that the gene has on cell viability and/or function, to treat a cone cell disorder, etc. Accordingly, in some embodiments, the polynucleotide cassettes of the present disclosure further comprise a gene to be delivered as a transgene to cone cells of an animal in vitro or in vivo. The gene coding sequence is typically operatively linked to the promoter region of the subject polynucleotide cassette, and in instances in which an an enhancer element is present, to the enhancer element of the subject polynucleotide cassette, such that the promoter and optionally enhancer elements promote the expression of the coding sequence or cDNA in cone cells of the subject.

The coding sequence to be expressed in the cone cells can be any polynucleotide sequence, e.g. gene or cDNA that encodes a gene product, e.g. polypeptide or RNA-based therapeutic (siRNA, antisense, ribozyme, shRNA, etc.). The coding sequence may be heterologous to the promoter sequence and/or 5′UTR sequence to which it is operably linked, i.e. not naturally operably associated with it. Alternatively, the coding sequence may be endogenous to the promoter sequence and/or 5′UTR sequence to which it is operably linked, i.e. is associated in nature with that promoter or 5′UTR. The gene product may act intrinsically in the cone cell, or it may act extrinsically, e.g. it may be secreted. For example, when the transgene is a therapeutic gene, the coding sequene may be any gene that encodes a desired gene product or functional fragment or variant thereof that can be used as a therapeutic for treating a cone cell disease or disorder, or as a means to otherwise enhance vision, including but not limited to promoting tetrachromatic color vision. In various preferred embodiments, the transgene encodes a therapeutic protein or functional fragment or variant thereof selected from the group consisting of:

    • (a) SEQ ID NO:7 (SEQ ID NO:6) Homo sapiens opsin 1 (cone pigments), short-wave-sensitive (OPN1SW), mRNA NCBI Reference Sequence: NM_001708.2;
    • (b) SEQ ID NO:9 (SEQ ID NO:8) Homo sapiens opsin 1 (cone pigments), medium-wave-sensitive (OPN1MW), mRNA NCBI Reference Sequence: NM_000513.2;
    • (c) SEQ ID NO:11 (SEQ ID NO:10) Homo sapiens opsin 1 (cone pigments), long-wave-sensitive (OPN1LW), mRNA NCBI Reference Sequence: NM_020061.4;
    • (d) SEQ ID NO:13 (SEQ ID NO:12) ATP binding cassette retina gene (ABCR) gene (NM_000350);
    • (e) SEQ ID NO:15 (SEQ ID NO:14) retinal pigmented epithelium-specific 65 kD protein gene (RPE65) (NM._000329);
    • (f) SEQ ID NO:17 (SEQ ID NO:16) retinal binding protein 1 gene (RLBP1) (NM._000326);
    • (g) SEQ ID NO:19 (SEQ ID NO:18) peripherin/retinal degeneration slow gene, (NM_000322);
    • (h) SEQ ID NO:21 (SEQ ID NO:20) arrestin (SAG) (NM_000541);
    • (i) SEQ ID NO:23 (SEQ ID NO:22) alpha-transducin (GNAT1) (NM_000172);
    • (j) SEQ ID NO:24 guanylate cyclase activator 1A (GUCA1A) (NP_000400.2);
    • (k) SEQ ID NO:25 retina specific guanylate cyclase (GUCY2D), (NP_000171.1);
    • (l) SEQ ID NO:26 & 27 alpha subunit of the cone cyclic nucleotide gated cation channel (CNGA3) (NP_001073347.1 or NP_001289.1);
    • (m) SEQ ID NO:28 Human cone transducin alpha subunit (incomplete achromotopsia);
    • (n) SEQ ID NO:29 cone cGMP-specific 3′,5′-cyclic phosphodiesterase subunit alpha′, protein (cone dystrophy type 4);
    • (o) SEQ ID NO:30 retinal cone rhodopsin-sensitive cGMP 3′,5′-cyclic phosphodiesterase subunit gamma, protein (retinal cone dystrophy type 3A);
    • (p) SEQ ID NO:31 cone rod homeobox, protein (Cone-rod dystrophy);
    • (q) SEQ ID NO:32 cone photoreceptor cyclic nucleotide-gated channel beta subunit, protein (achromatopsia);
    • (r) SEQ ID NO:33 cone photoreceptor cGMP-gated cation channel beta-subunit, protein (total color blindness, for example, among Pingelapese Islanders);
    • (s) SEQ ID NO:35 (SEQ ID NO:34) retinitis pigmentosa 1 (autosomal dominant) (RP 1);
    • (t) SEQ ID NO:37 (SEQ ID NO:36) retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP 1);
    • (u) SEQ ID NO:39 (SEQ ID NO:38) PRP8;
    • (v) SEQ ID NO:41 (SEQ ID NO:40) centrosomal protein 290 kDa (CEP290);
    • (w) SEQ ID NO:43 (SEQ ID NO:42) IMP (inosine 5′-monophosphate) dehydrogenase 1 (IMPDH1), transcript variant 1;
    • (x) SEQ ID NO:45 (SEQ ID NO:44) aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), transcript variant 1;
    • (y) SEQ ID NO:47 (SEQ ID NO:46) retinol dehydrogenase 12 (all-trans/9-cis/11-cis) (RDH12);
    • (z) SEQ ID NO:49 (SEQ ID NO:48) Leber congenital amaurosis 5 (LCA5), transcript variant 1; and
    • (aa) exemplary OPN1LW/OPN1MW2 polymorphs (compared to OPN1LW (L opsin) polypeptide sequence; the amino acid to the left of the number is the residue present in the L opsin sequence; the number is the reside number in L opsin, and the reside to the right of the number is the variation from L opsin. Polymorphs according to these embodiments may comprise one or more of the amino acid substitutions selected from Thr65Ile; Ile111Val; Ser116Tyr; Leu153Met; Ile171Val; Ala174Val; Ile178Val; Ser180Ala; Ile230Thr; Ala233Ser; Val236Met; Ile274Val; Phe275Leu; Tyr277Phe; Val279Phe; Thr285Ala; Pro298Ala; Tyr309Phe;
    • (ab) Additional Opsin Sequence Variation 1 (SEQ ID NO:61);
    • (ac) Additional Opsin Sequence Variation 2 (SEQ ID NO:62);
    • (ad) Additional Opsin Sequence Variation 3 (SEQ ID NO:63);
    • (ae) Additional Opsin Sequence Variation 4 (SEQ ID NO:64);
    • (af) Additional Opsin Sequence Variation 5 (SEQ ID NO:65);
    • (ag) Additional Opsin Sequence Variation 6 (SEQ ID NO:65);
    • (ah) Additional Opsin Sequence Variation 7 (SEQ ID NO:66);
    • (ai) Additional Opsin Sequence Variation 8 (SEQ ID NO:67);
    • (aj) Additional Opsin Sequence Variation 9 (SEQ ID NO:68);
    • (ak) hCHR2 (channel rhodopsin) (SEQ ID NO:69);
    • (al) NpHR (halorhodopsin) (SEQ ID NO:70); and
    • (am) eGFP (SEQ ID NO:71).

In some embodiments, the coding sequence encoded by the transgene encodes a polypeptide having at least 85% sequence identity to a polypeptide encoded by a sequence disclosed above or herein, for example at least 90% sequence identity, e.g. at least 95% sequence identity, at least 98% sequence identity, or at least 99% sequence identity. Thus, for example, the coding sequence encodes a cone opsin having at least 85%, at least 90%, at least 95% identity, at least 98% sequence identity, or at least 99% sequence identity, to the polypeptide encoded by OPN1LW, OPNIMW, or OPN1SW. In some embodiments, the coding sequence has a sequence identity of at least 85%, 90%, 95%, 98% or at least 99% to SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, or SEQ ID NO:71.

The proteins recited in (a)-(c) and (aa-aj) are all involved in color vision. The exemplary polymorphs include ones at positions 65, 116, 180, 230, 233, 277, 285, and 309 that affect the spectra of the pigments in cone cells expressing them. Positions 274, 275, 277, 279, 285, 298 and 309 together distinguish L opsin from M opsin.

The proteins recited (d)-(z) are exemplary eye disease-associated genes such as in retinitis pigmentosa (polypeptides “e”-“l”, “s”-“y”), incomplete achromatopsia (polypeptide “m”), Stargardt's (polypeptide “d”); Leber congenital amaurosis (polypeptide “z”); cone dystrophy, such as cone dystrophy type 4 (polypeptide “n”); retinal cone dystrophy; for example, retinal cone dystrophy type 3A (polypeptide “o”); Cone-rod dystrophy (polypeptide “p”); achromatopsia (polypeptide “q’); and total color blindness, for example, among Pingelapese Islanders (polypeptide “r”).

In one embodiment of the invention, the transgene coding sequence is modified, or “codon optimized” to enhance expression by replacing infrequently represented codons with more frequently represented codons. The coding sequence is the portion of the mRNA sequence that encodes the amino acids for translation. During translation, each of 61 trinucleotide codons are translated to one of 20 amino acids, leading to a degeneracy, or redundancy, in the genetic code. However, different cell types, and different animal species, utilize tRNAs (each bearing an anticodon) coding for the same amino acids at different frequencies. When a gene sequence contains codons that are infrequently represented by the corresponding tRNA, the ribosome translation machinery may slow, impeding efficient translation. Expression can be improved via “codon optimization” for a particular species, where the coding sequence is altered to encode the same protein sequence, but utilizing codons that are highly represented, and/or utilized by highly expressed human proteins (Cid-Arregui et al., 2003; J. Virol. 77: 4928). In one aspect of the present invention, the coding sequence of the transgene is modified to replace codons infrequently expressed in mammal or in primates with codons frequently expressed in primates. For example, in some embodiments, the coding sequence encoded by the transgene encodes a polypeptide having at least 85% sequence identity to a polypeptide encoded by a sequence disclosed above or herein, for example at least 90% sequence identity, e.g. at least 95% sequence identity, at least 98% identity, at least 99% identity, wherein at least one codon of the coding sequence has a higher tRNA frequency in humans than the corresponding codon in the sequence disclosed above or herein.

In an additional embodiment of the invention, the transgene coding sequence is modified to enhance expression by termination or removal of open reading frames (ORFs) that do not encode the desired transgene. An open reading frame (ORF) is the nucleic acid sequence that follows a start codon and does not contains a stop codons. ORFs may be in the forward or reverse orientation, and may be “in frame” or “out of frame” compared with the gene of interest. Such open reading frames have the potential to be expressed in an expression cassette alongside the gene of interest, and could lead to undesired adverse effects. In one aspect of the present invention, the coding sequence of the transgene has been modified to remove open reading frames by further altering codon usage. This was done by eliminating start codons (ATG) and introducing stop codons (TAG, TAA, or TGA) in reverse orientation or out-of-frame ORFs, while preserving the amino acid sequence and maintaining highly utilized codons in the gene of interest (i.e., avoiding codons with frequency<20%). In the present invention, the transgene coding sequence may be optimized by either of codon optimization and removal of non-transgene ORFs or using both techniques. As will be apparent to one of ordinary skill in the art, it is preferable to remove or minimize non-transgene ORFs after codon optimization in order to remove ORFs introduced during codon optimization. Examples of codon optimization and removal of ORFs are shown in FIGS. 3A-3C.

In some embodiments, the polynucleotide cassette of the present invention further comprises a polyadenylation region. As is understood in the art, RNA polymerase II transcripts are terminated by cleavage and additional of a polyadenylation region, also known as a poly A signal, poly A region or poly A tail. The poly A region contains multiple consecutive adenosine monophosphates, often with repeats of the motif AAUAAA. Several efficient polyadenylation sites have been identified, including those from SV40, bovine growth hormone, human growth hormone and rabbit beta globin (Xu et al, 2001; Gene 272: 149; Xu et al., 2002; J Control Rel. 81:155). The most efficient polyA signal for expression of a transgene in cone cells may depend on the cell type and species of interest and the particular vector used. In some embodiments of the invention, the polynucleotide cassette comprises, consists essentially of, or consists of the polyA region selected from the group consisting of SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:90 or SEQ ID NO:91 or functional fragment or variant thereof of any of the preceding sequences. In certain embodiments, the polyA region comprises SEQ ID NO:90 or a variant thereof. In some such embodiments, the polyA region consists essentially of SEQ ID NO:90 or a variant thereof.

As will be appreciated by the ordinarily skilled artisan, two or more of the aforementioned polynucleotide elements may be combined to create the polynucleotide cassettes of the present disclosure. Thus, for example, the subject polynucleotide cassette may comprise a promoter region comprising an improved promoter sequence in operable linkage with an improved 5′UTR sequence, for example SEQ ID NO:80 in operable combination with SEQ ID NO:84 or SEQ ID NO:85, see, e.g. SEQ ID NO:2, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:93, SEQ ID NO:94, or SEQ ID NO:95. As another example, the subject polynucleotide cassette may comprise an improved enhancer sequence or region in operable linkage with an improved promoter sequence or region, for example SEQ ID NO:51 or SEQ ID NO:52 in operable combination with SEQ ID NO:80, SEQ ID NO:2, SEQ ID NO:54, SEQ ID NO:55, or SEQ ID NO:93; see, e.g. SEQ ID NO:92 or SEQ ID NO:95. As another example, the subject polynucleotide cassette may comprise an improved 5′UTR sequence in operable linkage with an improved intron sequence, for example SEQ ID NO:84 or SEQ ID NO:86 in operable combination with SEQ ID NO:60; see, e.g. SEQ ID NO:94 or SEQ ID NO:95. As another example, the subject polynucleotide cassette may comprise an improved 5′UTR sequence in operable linkage with an improved intron sequence and an improved Kozak sequence, for example, SEQ ID NO:84 or SEQ ID NO:86 in operable combination with SEQ ID NO:60 and with SEQ ID NO:73; see, e.g. SEQ ID NO:95. As another example, the subject polynucleotide cassette may comprise an improved enhancer, improved promoter, improved 5′UTR, improved intron, improved kozak and improved polyA region in operable linkage; see, e.g. SEQ ID NO:95. Other combinations of elements both as disclosed herein or as known in the art will be readily appreciated by the ordinarily skilled artisan.

Additionally, as will be recognized by one of ordinary skill in the art, the polynucleotide cassettes may optionally contain other elements including, but not limited to restriction sites to facilitate cloning and regulatory elements for a particular gene expression vector. Examples of regulatory sequence include ITRs for AAV vectors, bacterial sequences for plasmid vectors, attP or attB sites for phage integrase vectors, and transposable elements for transposons.

Gene Therapy Vectors

As alluded to above, in some aspects of the present invention, the subject polynucleotide cassettes are used to deliver a gene to cone cells of an animal, e.g. to determine the effect that the gene has on cell viability and/or function, to treat a cone cell disorder, etc. Accordingly, in some aspects of the invention, the composition that provides for the expression of a transgene in cone cells is a gene delivery vector, wherein the gene delivery vector comprises the polynucleotide cassettes of the present disclosure.

Any convenient gene therapy vector that finds use delivering polynucleotide sequences to cone cells is encompassed by the gene delivery vectors of the present disclosure. For example, the vector may comprise single or double stranded nucleic acid, e.g. single stranded or double stranded DNA. For example, the gene delivery vector may be a naked DNA, e.g. a plasmid, a minicircle, etc. As another example, the gene delivery vector may be a virus, e.g. an adenovirus, an adeno-associated virus, or a retrovirus, e.g. Moloney murine leukemia virus (M-MuLV), Moloney murine sarcoma virus (MoMSV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), gibbon ape leukemia virus (GaLV), feline leukemia virus (FLV), spumavirus, Friend murine leukemia virus, Murine Stem Cell Virus (MSCV) and Rous Sarcoma Virus (RSV)) or lentivirus. While embodiments encompassing the use of adeno-associated virus are described in greater detail below, it is expected that the ordinarily skilled artisan will appreciate that similar knowledge and skill in the art can be brought to bear on non-AAV gene therapy vectors as well. See, for example, the discussion of retroviral vectors in, e.g., U.S. Pat. No. 7,585,676 and U.S. Pat. No. 8,900,858, and the discussion of adenoviral vectors in, e.g. U.S. Pat. No. 7,858,367, the full disclosures of which are incorporated herein by reference.

In some embodiments, the gene delivery vector is a recombinant adeno-associated virus (rAAV). In such embodiments, the subject polynucleotide cassette is flanked on the 5′ and 3′ ends by functional AAV inverted terminal repeat (ITR) sequences. By “functional AAV ITR sequences” is meant that the ITR sequences function as intended for the rescue, replication and packaging of the AAV virion. Hence, AAV ITRs for use in the gene delivery vectors of the invention need not have a wild-type nucleotide sequence, and may be altered by the insertion, deletion or substitution of nucleotides or the AAV ITRs may be derived from any of several AAV serotypes, e.g. AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10. Preferred AAV vectors have the wild type REP and CAP genes deleted in whole or part, but retain functional flanking ITR sequences.

In such embodiments, the subject polynucleotide cassette is encapsidated within an AAV capsid, which may be derived from any adeno-associated virus serotype, including without limitation, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, etc. For example, the AAV capsid may be a wild type, or native, capsid. Wild type AAV capsids of particular interest include AAV2, AAV5, and AAV9. However, as with the ITRs, the capsid need not have a wild-type nucleotide sequence, but rather may be altered by the insertion, deletion or substitution of nucleotides in the VP1, VP2 or VP3 sequence, so long as the capsid is able to transduce cone cells. Put another way, the AAV capsid may be a variant AAV capsid. Variant AAV capsids of particular interest include those comprising a peptide insertion within residues 580-600 of AAV2 or the corresponding residues in another AAV, e.g. LGETTRP, NETITRP, KAGQANN, KDPKTTN, KDTDTTR, RAGGSVG, AVDTTKF, orSTGKVPN, as disclosed in US Application No. US 2014/0294771, the full disclosure of which is incorporated by reference herein. In some embodiments, the AAV vector is a “pseudotyped” AAV created by using the capsid (cap) gene of one AAV and the rep gene and ITRs from a different AAV, e.g. a pseudotyped AAV2 created by using rep from AAV2 and cap from AAV1, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, or AAV9 together with a plasmid containing a vector based on AAV2. For example, the AAV vector may be rAAV2/1, rAAV2/3, rAAV2/4, rAAV2/5, rAAV2/6, rAAV2/7, rAAV2/8, rAAV2/9, etc. Preferably, the rAAV is replication defective, in that the AAV vector cannot independently further replicate and package its genome. For example, when cone cells are transduced with rAAV virions, the gene is expressed in the transduced cone cells, however, due to the fact that the transduced cone cells lack AAV rep and cap genes and accessory function genes, the rAAV is not able to replicate.

Gene therapy vectors, e.g. rAAV) virions encapsulating the polynucleotide cassettes of the present disclosure, may be produced using standard methodology. For example, in the case of rAAV virions, an AAV expression vector according to the invention may be introduced into a producer cell, followed by introduction of an AAV helper construct, where the helper construct includes AAV coding regions capable of being expressed in the producer cell and which complement AAV helper functions absent in the AAV vector. This is followed by introduction of helper virus and/or additional vectors into the producer cell, wherein the helper virus and/or additional vectors provide accessory functions capable of supporting efficient rAAV virus production. The producer cells are then cultured to produce rAAV. These steps are carried out using standard methodology. Replication-defective AAV virions encapsulating the recombinant AAV vectors of the instant invention are made by standard techniques known in the art using AAV packaging cells and packaging technology. Examples of these methods may be found, for example, in U.S. Pat. Nos. 5,436,146; 5,753,500, 6,040,183, 6,093,570 and 6,548,286, expressly incorporated by reference herein in their entirety. Further compositions and methods for packaging are described in Wang et al. (US 2002/0168342), also incorporated by reference herein in its entirety.

Any suitable method for producing viral particles for delivery of the subject polynucleotide cassettes can be used, including but not limited to those described in the examples that follow. Any concentration of viral particles suitable to effectively transducer cone cells can be prepared for contacting cone cells in vitro or in vivo. For example, the viral particles may be formulated at a concentration of 108 vector genomes per ml or more, for example, 5×108 vector genomes per mL; 109 vector genomes per mL; 5×109 vector genomes per mL, 1010 vector genomes per mL, 5×1010 vector genomes per mL; 1011 vector genomes per mL; 5×1011 vector genomes per mL; 1012 vector genomes per mL; 5×1012 vector genomes per mL; 1013 vector genomes per mL; 1.5×1013 vector genomes per mL; 3×1013 vector genomes per mL; 5×1013 vector genomes per mL; 7.5×1013 vector genomes per mL; 9×1013 vector genomes per mL; 1×1014 vector genomes per mL, 5×1014 vector genomes per mL or more, but typically not more than 1×1015 vector genomes per mL. Similarly, any total number of viral particles suitable to provide appropriate transduction of retinal cone cells to confer the desired effect or treat the disease can be administered to the mammal or to the primate's eye. In various preferred embodiments, at least 108; 5×108; 109; 5×109, 1010, 5×1010; 1011; 5×1011; 1012; 5×1012; 1013; 1.5×1013; 3×1013; 5×1013; 7.5×1013; 9×1013, 1×1014 viral particles, or 5×1014 viral particles or more, but typically not more than 1×1015 viral particles are injected per eye. Any suitable number of administrations of the vector to the mammal or the primate eye can be made. In one embodiment, the methods comprise a single administration; in other embodiments, multiple administrations are made over time as deemed appropriate by an attending clinician.

The subject viral vector may be formulated into any suitable unit dosage, including, without limitation, 1×108 vector genomes or more, for example, 1×109, 1×1010, 1×1011, 1×1012, or 1×1013 vector genomes or more, in certain instances, 1×1014 vector genomes, but usually no more than 4×1015 vector genomes. In some cases, the unit dosage is at most about 5×1015 vector genomes, e.g. 1×1014 vector genomes or less, for example 1×1013, 1×1012, 1×1011, 1×1010, or 1×109 vector genomes or less, in certain instances 1×108 vector genomes or less, and typically no less than 1×108 vector genomes. In some cases, the unit dosage is 1×1010 to 1×1011 vector genomes. In some cases, the unit dosage is 1×1010 to 3×1012 vector genomes. In some cases, the unit dosage is 1×109 to 3×1013 vector genomes. In some cases, the unit dosage is 1×108 to 3×1014 vector genomes.

In some cases, the unit dosage of pharmaceutical composition may be measured using multiplicity of infection (MOI). By MOI it is meant the ratio, or multiple, of vector or viral genomes to the cells to which the nucleic acid may be delivered. In some cases, the MOI may be 1×106. In some cases, the MOI may be 1×105-1×107. In some cases, the MOI may be 1×104-1×108. In some cases, recombinant viruses of the disclosure are at least about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, and 1×1018 MOI. In some cases, recombinant viruses of this disclosure are 1×108 to 3×1014 MOI. In some cases, recombinant viruses of the disclosure are at most about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017 and 1×1018 MOI.

In some aspects, the amount of pharmaceutical composition comprises about 1×108 to about 1×1015 recombinant viruses, about 1×109 to about 1×1014 recombinant viruses, about 1×1010 to about 1×1013 recombinant viruses, or about 1×1011 to about 3×1012 recombinant viruses.

In preparing the subject rAAV compositions, any host cells for producing rAAV virions may be employed, including, for example, mammalian cells (e.g. 293 cells), insect cells (e.g. SF9 cells), microorganisms and yeast. Host cells can also be packaging cells in which the AAV rep and cap genes are stably maintained in the host cell or producer cells in which the AAV vector genome is stably maintained and packaged. Exemplary packaging and producer cells are derived from SF-9, 293, A549 or HeLa cells. AAV vectors are purified and formulated using standard techniques known in the art.

For instances in which cone cells are to be contacted in vivo, the subject polynucleotide cassettes or gene delivery vectors comprising the subject polynucleotide cassette can be treated as appropriate for delivery to the eye. In particular, the present invention include pharmaceutical compositions comprising a polynucleotide cassetee or gene delivery vector described herein and a pharmaceutically-acceptable carrier, diluent or excipient. The subject polynucleotide cassettes or gene delivery vector can be combined with pharmaceutically-acceptable carriers, diluents and reagents useful in preparing a formulation that is generally safe, non-toxic, and desirable, and includes excipients that are acceptable for primate use. Such excipients can be solid, liquid, semisolid, or, in the case of an aerosol composition, gaseous. Examples of such carriers or diluents include, but are not limited to, water, saline, Ringer's solutions, dextrose solution, and 5% human serum albumin. Supplementary active compounds can also be incorporated into the formulations. Solutions or suspensions used for the formulations can include a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial compounds such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating compounds such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates; detergents such as Tween 20 to prevent aggregation; and compounds for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.

Pharmaceutical compositions suitable for internal use in the present invention further include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, or phosphate buffered saline (PBS). In somecases, the composition is sterile and should be fluid to the extent that easy syringability exists. In certain embodiments, it is stable under the conditions of manufacture and storage and is preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be, e.g., a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the internal compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

In one embodiment, active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The pharmaceutical compositions can be included in a container, pack, or dispenser, e.g. syringe, e.g. a prefilled syringe, together with instructions for administration.

The pharmaceutical compositions of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal comprising a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bio-equivalents.

The term “prodrug” indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.

The term “pharmaceutically acceptable salt” refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. A variety of pharmaceutically acceptable salts are known in the art and described, e.g., in in “Remington's Pharmaceutical Sciences”, 17th edition, Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., USA, 1985 (and more recent editions thereof), in the “Encyclopaedia of Pharmaceutical Technology”, 3rd edition, James Swarbrick (Ed.), Informa Healthcare USA (Inc.), NY, USA, 2007, and in J. Pharm. Sci. 66: 2 (1977). Also, for a review on suitable salts, see Handbook of Pharmaceutical Salts: Properties, Selection, and Use by Stahl and Wermuth (Wiley-VCH, 2002).

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Metals used as cations comprise sodium, potassium, magnesium, calcium, and the like Amines comprise N—N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., “Pharmaceutical Salts,” J. Pharma Sci., 1977, 66, 119). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.

The subject polynucleotide cassette or gene delivery vector, e.g.recombinant virus (virions), can be incorporated into pharmaceutical compositions for administration to mammalian patients, particularly primates and more particularly humans. The subject polynucleotide cassette or gene delivery vector, e.g. virions can be formulated in nontoxic, inert, pharmaceutically acceptable aqueous carriers, preferably at a pH ranging from 3 to 8, more preferably ranging from 6 to 8. Such sterile compositions will comprise the vector or virion containing the nucleic acid encoding the therapeutic molecule dissolved in an aqueous buffer having an acceptable pH upon reconstitution.

In some embodiments, the pharmaceutical composition provided herein comprise a therapeutically effective amount of a vector or virion in admixture with a pharmaceutically acceptable carrier and/or excipient, for example saline, phosphate buffered saline, phosphate and amino acids, polymers, polyols, sugar, buffers, preservatives and other proteins. Exemplary amino acids, polymers and sugars and the like are octylphenoxy polyethoxy ethanol compounds, polyethylene glycol monostearate compounds, polyoxyethylene sorbitan fatty acid esters, sucrose, fructose, dextrose, maltose, glucose, mannitol, dextran, sorbitol, inositol, galactitol, xylitol, lactose, trehalose, bovine or human serum albumin, citrate, acetate, Ringer's and Hank's solutions, cysteine, arginine, carnitine, alanine, glycine, lysine, valine, leucine, polyvinylpyrrolidone, polyethylene and glycol. Preferably, this formulation is stable for at least six months at 4° C.

In some embodiments, the pharmaceutical composition provided herein comprises a buffer, such as phosphate buffered saline (PBS) or sodium phosphate/sodium sulfate, tris buffer, glycine buffer, sterile water and other buffers known to the ordinarily skilled artisan such as those described by Good et al. (1966) Biochemistry 5:467. The pH of the buffer in which the pharmaceutical composition comprising the tumor suppressor gene contained in the adenoviral vector delivery system, may be in the range of 6.5 to 7.75, preferably 7 to 7.5, and most preferably 7.2 to 7.4.

Methods

As alluded to above, the subject polynucleotide cassettes and gene delivery vectors, referred to collectively herein as the “subject compositions”, find use in expressing a transgene in cone cells of an animal. For example, the subject compositions may be used in research, e.g. to determine the effect that the gene has on cone cell viability and/or function. As another example, the subject compositions may be used in medicine, e.g. to treat a cone cell disorder. Thus, in some aspects of the invention, methods are provided for the expression of a gene in cone cells, the method comprising contacting cone cells with a composition of the present disclosure. In some embodiments, contacting occurs in vitro. In some embodiments, contacting occurs in vivo, i.e., the subject composition is administered to a subject.

For instances in which cone cells are to be contacted in vitro with a subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette, the cells may be from any mammalian species, e.g. rodent (e.g. mice, rats, gerbils, squirrels), rabbit, feline, canine, goat, ovine, pig, equine, bovine, primate, human. Cells may be from established cell lines, e.g. WERI cells, 661W cells, or they may be primary cells, where “primary cells”, “primary cell lines”, and “primary cultures” are used interchangeably herein to refer to cells and cells cultures that have been derived from a subject and allowed to grow in vitro for a limited number of passages, i.e. splittings, of the culture. For example, primary cultures are cultures that may have been passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, or 15 times, but not enough times go through the crisis stage. Typically, the primary cell lines of the present invention are maintained for fewer than 10 passages in vitro.

If the cells are primary cells, they may be harvested from a mammal by any convenient method, e.g. whole explant, biopsy, etc. An appropriate solution may be used for dispersion or suspension of the harvested cells. Such solution will generally be a balanced salt solution, e.g. normal saline, PBS, Hank's balanced salt solution, etc., conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, generally from 5-25 mM. Convenient buffers include HEPES, phosphate buffers, lactate buffers, etc. The cells may be used immediately, or they may be stored, frozen, for long periods of time, being thawed and capable of being reused. In such cases, the cells will usually be frozen in 10% DMSO, 50% serum, 40% buffered medium, or some other such solution as is commonly used in the art to preserve cells at such freezing temperatures, and thawed in a manner as commonly known in the art for thawing frozen cultured cells.

To promote expression of the transgene, the subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette will be contacted with the cells for about 30 minutes to 24 hours or more, e.g., 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 hours, 3.5 hours 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 12 hours, 16 hours, 18 hours, 20 hours, 24 hours, etc. The subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette may be provided to the subject cells one or more times, e.g. one time, twice, three times, or more than three times, and the cells allowed to incubate with the agent(s) for some amount of time following each contacting event e.g. 16-24 hours, after which time the media is replaced with fresh media and the cells are cultured further. Contacting the cells may occur in any culture media and under any culture conditions that promote the survival of the cells. For example, cells may be suspended in any appropriate nutrient medium that is convenient, such as Iscove's modified DMEM or RPMI 1640, supplemented with fetal calf serum or heat inactivated goat serum (about 5-10%), L-glutamine, a thiol, particularly 2-mercaptoethanol, and antibiotics, e.g. penicillin and streptomycin. The culture may contain growth factors to which the cells are responsive. Growth factors, as defined herein, are molecules capable of promoting survival, growth and/or differentiation of cells, either in culture or in the intact tissue, through specific effects on a transmembrane receptor. Growth factors include polypeptides and non-polypeptide factors.

Typically, an effective amount of subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette is provided to produce the expression of the transgene in cells. As discussed elsewhere herein, the effective amount may be readily determined empirically, e.g. by detecting the presence or levels of transgene gene product, by detecting an effect on the viability or function of the cone cells, etc. Typically, an effect amount of subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette will promote greater expression of the transgene in cone cells than the same amount of a polynucleotide cassette as known in the art, e.g. a pR2.1 (nucleotides 1-2274 of SEQ ID NO:50), pR1.7, pR1.5, pR1.1, or IRBP/GNAT2 cassette. Typically, expression will be enhanced 2-fold or more relative to the expression from a reference, or control, polynucleotide cassette e.g. as known in the art, for example 3-fold, 4-fold, or 5-fold or more, in some instances 10-fold, 20-fold or 50-fold or more, e.g. 100-fold.

In some embodiments, as when the transgene is a selectable marker, the population of cells may be enriched for those comprising the subject polynucleotide cassette by separating the modified cells from the remaining population. Separation may be by any convenient separation technique appropriate for the selectable marker used. For example, if the transgene is a fluorescent marker, cells may be separated by fluorescence activated cell sorting, whereas if the transgene is a cell surface marker, cells may be separated from the heterogeneous population by affinity separation techniques, e.g. magnetic separation, affinity chromatography, “panning” with an affinity reagent attached to a solid matrix, or other convenient technique. Techniques providing accurate separation include fluorescence activated cell sorters, which can have varying degrees of sophistication, such as multiple color channels, low angle and obtuse light scattering detecting channels, impedance channels, etc. The cells may be selected against dead cells by employing dyes associated with dead cells (e.g. propidium iodide). Any technique may be employed which is not unduly detrimental to the viability of the cells. Cell compositions that are highly enriched for cells comprising the subject polynucleoties are achieved in this manner. By “highly enriched”, it is meant that the genetically modified cells will be 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of the cell composition, for example, about 95% or more, or 98% or more of the cell composition. In other words, the composition may be a substantially pure composition of genetically modified cells.

For instances in which cone cells are to be contacted in vivo with a subject polynucleotide cassette or gene delivery vector comprising a subject polynucleotide cassette, the subject may be any mammal, e.g. rodent (e.g. mice, rats, gerbils), rabbit, feline, canine, goat, ovine, pig, equine, bovine, or primate. In certain embodiments, the subject is a primate of the Parvorder Catarrhini. As is known in the art, Catarrhini is one of the two subdivisions of the higher primates (the other being the New World monkeys), and includes Old World monkeys and the apes, which in turn are further divided into the lesser apes or gibbons and the great apes, consisting of the orangutans, gorillas, chimpanzees, bonobos, and humans. In a further preferred embodiment, the primate is a human.

The subject composition may be administered to the retina of the subject by any suitable method. For example, the subject composition may be administered intraocularly via intravitreal injection or subretinal injection. The general methods for delivering a vector via intravitreal injection or via subretinal injection may be illustrated by the following brief outlines. These examples are merely meant to illustrate certain features of the methods, and are in no way meant to be limiting.

For subretinal administration, the vector can be delivered in the form of a suspension injected subretinally under direct observation using an operating microscope. Typically, a volume of 1 to 200 uL, e.g. 50 uL, 100 uL, 150 ul, or 200 uL, but usually no more than 200 uL, of the subject composition will be administered by such methods. This procedure may involve vitrectomy followed by injection of vector suspension using a fine cannula through one or more small retinotomies into the subretinal space. Briefly, an infusion cannula can be sutured in place to maintain a normal globe volume by infusion (of e.g. saline) throughout the operation. A vitrectomy is performed using a cannula of appropriate bore size (for example 20 to 27 gauge), wherein the volume of vitreous gel that is removed is replaced by infusion of saline or other isotonic solution from the infusion cannula. The vitrectomy is advantageously performed because (1) the removal of its cortex (the posterior hyaloid membrane) facilitates penetration of the retina by the cannula; (2) its removal and replacement with fluid (e.g. saline) creates space to accommodate the intraocular injection of vector, and (3) its controlled removal reduces the possibility of retinal tears and unplanned retinal detachment.

For intravitreal administration, the vector can be delivered in the form of a suspension. Initially, topical anesthetic is applied to the surface of the eye followed by a topical antiseptic solution. The eye is held open, with or without instrumentation, and the vector is injected through the sclera with a short, narrow, for example a 30 gauge needle, into the vitreous cavity of the eye of a subject under direct observation. Typically, a volume of 1 to 100 uL, e.g. 25 uL, 50 uL, or 100 uL, and usually no more than 100 uL, of the subject composition may be delivered to the eye by intravitreal injection without removing the vitreous. Alternatively, a vitrectomy may be performed, and the entire volume of vitreous gel is replaced by an infusion of the subject composition. In such cases, up to about 4 mL of the subject composition may be delivered, e.g. to a human eye. Intravitreal administration is generally well tolerated. At the conclusion of the procedure, there is sometimes mild redness at the injection site. There is occasional tenderness, but most patients do not report any pain. No eye patch or eye shield is necessary after this procedure, and activities are not restricted. Sometimes, an antibiotic eye drop is prescribed for several days to help prevent infection.

The methods and compositions of the present disclosure find use in the treatment of any condition that can be addressed, at least in part, by gene therapy of cone photoreceptor cells. Thus, the compositions and methods of the present disclosure find use in the treatment of individuals in need of a cone cell therapy. By a person in need of a cone cell therapy, it is meant an individual having or at risk of developing a cone cell disorder. By a “cone cell disorder” it is meant any disorder impacting retinal cone cells, including but not limited to vision disorders of the eye that are associated with a defect within cone cells, i.e. a cone-instrinsic defect, e.g. macular dystrophies such as Stargardt's macular dystrophy, cone dystrophy, cone-rod dystrophy, Spinocerebellar ataxia type 7, and Bardet-Biedl syndrome-1; as well as color vision disorders, including achromatopsia, incomplete achromatopsia, blue cone monochromacy, and protan, deutan, and tritan defects; as well as vision disorders of the central macula (within primates) that may be treated by targeting cone cells, e.g. age-related macular degeneration, macular telangiectasia, retinitis pigmentosa, diabetic retinopathy, retinal vein occlusions, glaucoma, Sorsby's fundus dystrophy, adult vitelliform macular dystrophy, Best's disease, rod-cone dystrophy, Leber's congenital amaurosis, and X-linked retinoschisis.

Stargardt's macular dystrophy. Stargardt's macular dystrophy, also known as Stargardt Disease and fundus flavimaculatus, is an inherited form of juvenile macular degeneration that causes progressive vision loss usually to the point of legal blindness. The onset of symptoms usually appears between the ages of six and thirty years old (average of about 16-18 years). Mutations in several genes, including ABCA4, CNGB3, ELOVL4, PROM1, are associated with the disorder. Symptoms typically develop by twenty years of age, and include wavy vision, blind spots, blurriness, impaired color vision, and difficulty adapting to dim lighting. The main symptom of Stargardt disease is loss of visual acuity, which ranges from 20/50 to 20/200. In addition, those with Stargardt disease are sensitive to glare; overcast days offer some relief. Vision is most noticeably impaired when the macula is damaged, which can be observed by fundus exam.

Cone dystrophy. Cone dystrophy (COD) is an inherited ocular disorder characterized by the loss of cone cells. The most common symptoms of cone dystrophy are vision loss (age of onset ranging from the late teens to the sixties), sensitivity to bright lights, and poor color vision. Visual acuity usually deteriorates gradually, but it can deteriorate rapidly to 20/200; later, in more severe cases, it drops to “counting fingers” vision. Color vision testing using color test plates (HRR series) reveals many errors on both red-green and blue-yellow plates. It is believed that the dystrophy is primary, since subjective and objective abnormalities of cone function are found before ophthalmoscopic changes can be seen. However, the retinal pigment epithelium (RPE) rapidly becomes involved, leading to a retinal dystrophy primarily involving the macula. The fundus exam via ophthalmoscope is essentially normal early on in cone dystrophy, and definite macular changes usually occur well after visual loss. The most common type of macular lesion seen during ophthalmoscopic examination has a bull's-eye appearance and consists of a doughnut-like zone of atrophic pigment epithelium surrounding a central darker area. In another, less frequent form of cone dystrophy there is rather diffuse atrophy of the posterior pole with spotty pigment clumping in the macular area. Rarely, atrophy of the choriocapillaris and larger choroidal vessels is seen in patients at an early stage. Fluorescein angiography (FA) is a useful adjunct in the workup of someone suspected to have cone dystrophy, as it may detect early changes in the retina that are too subtle to be seen by ophthalmoscope. Because of the wide spectrum of fundus changes and the difficulty in making the diagnosis in the early stages, electroretinography (ERG) remains the best test for making the diagnosis. Abnormal cone function on the ERG is indicated by a reduced single-flash and flicker response when the test is carried out in a well-lit room (photopic ERG). Mutations in several genes, including GUCA1A, PDE6C, PDE6H, and RPGR, are associated with the disorder.

Cone-rod dystrophy. Cone-rod dystrophy (CRD, or CORD) is an inherited retinal dystrophy that belongs to the group of pigmentary retinopathies. CRD is characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region and the loss of both cone and rod cells. In contrast to rod-cone dystrophy (RCD) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRD reflects the opposite sequence of events: primary cone involvement, or, sometimes, by concomitant loss of both cones and rods. Symptoms include decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. Mutations in several genes, including ADAM9, PCDH21, CRX, GUCY2D, PITPNM3, PROM1, PRPH2, RAX2, RIMS1, RPGR, and RPGRIP1, are associated with the disorder.

Spinocerebellar ataxia type 7. Spinocerebellar ataxia is a progressive, degenerative, inherited disease characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. There are multiple types of SCA, with Spinocerebellar ataxia type 7 (SCA-7) differing from most other SCAs in that visual problems can occur in addition to poor coordination. SCA-7 is associated with automosmal dominant mutations in the ATXN7/SCA7 gene. When the disease manifests itself before age 40, visual problems rather than poor coordination are typically the earliest signs of disease. Early symptoms include difficulty distinguishing colors and decreased central vison. In addition, symptoms of ataxia (incoordination, slow eye movements, and mild changes in sensation or reflexes) may be detectable. Loss of motor control, unclear speech, and difficulty swallowing become prominent as the disease progresses.

Bardet-Biedl syndrome-1. Bardet-Biedl syndrome-1 (BBS-1) is a pleiotropic disorder with variable expressivity and a wide range of clinical variability observed both within and between families. The main clinical features are rod-cone dystrophy, with childhood-onset visual loss preceded by night blindness; postaxial polydactyly; truncal obesity that manifests during infancy and remains problematic throughout adulthood; specific learning difficulties in some but not all individuals; male hypogenitalism and complex female genitourinary malformations; and renal dysfunction, a major cause of morbidity and mortality. Vision loss is one of the major features of Bardet-Biedl syndrome. Problems with night vision become apparent by mid-childhood, followed by blind spots that develop in the peripheral vision. Over time, these blind spots enlarge and merge to produce tunnel vision. Most people with Bardet-Biedl syndrome also develop blurred central vision (poor visual acuity) and become legally blind by adolescence or early adulthood. Bardet-Biedl syndrome can result from mutations in at least 14 different genes (often called BBS genes) known or suspected to play critical roles in cilia function, with mutations in BBS1 and BBS10 being the most common.

Achromatopsia. Achromatopsia, or Rod monochromatism, is a disorder in which subjects experience a complete lack of the perception of color, such that the subject sees only in black, white, and shades of grey. Other symptoms include reduced visual acuity, photophobia, nystagmus, small central scotoma, and eccentric fixation. The disorder is frequently noticed first in children around six months of age by their photophobic activity and/or their nystagmus. Visual acuity and stability of the eye motions generally improve during the first 6-7 years of life (but remain near 20/200). Mutations in CNGB3, CNGA3, GNAT2, PDE6C, and PDE6HI have been associated with the disorder.

Incomplete achromatopsia. Incomplete achromatopsia is similar to Achromatopsia but with less penetrance. In incomplete achromatopsia, the symptoms are similar to those of complete achromatopsia except in a diminished form. Individuals with incomplete achromatopsia have reduced visual acuity with or without nystagmus or photophobia. Furthermore, these individuals show only partial impairment of cone cell function but again have retained rod cell function.

Blue cone monochromacy. Blue cone (S cone) monochromatism (BCM) is a rare X-linked congenital stationary cone dysfunction syndrome, affecting approximately 1 in 100,000 individuals. Affected males with BCM have no functional long wavelength sensitive (L) or medium wavelength sensitive (M) cones in the retina, due to mutations at the genetic locus for the L and M-opsin genes. Color discrimination is severely impaired from birth, and vision is derived from the remaining preserved S cones and rod photoreceptors. BCM typically presents with reduced visual acuity (6/24 to 6/60), pendular nystagmus, photophobia, and patients often have myopia. The rod-specific and maximal electroretinogram (ERG) usually show no definite abnormality, whereas the 30 Hz cone ERG cannot be detected. Single flash photopic ERG is often recordable, albeit small and late, and the S cone ERG is well preserved.

Color vision deficiency. Color vision deficiency (CVD), or color blindness, is the inability or decreased ability to see color, or perceive color differences, under normal lighting conditions. Individuals suffering from color blindness may be identified as such using any of a number of color vision tests, e.g., color ERG (cERG), pseudoisochromatic plates (Ishihara plates, Hardy-Rand-Ritter polychromatic plates), the Farnsworth-Munsell 100 hue test, the Farnsworth's panel D-15, the City University test, Kollner's rule, etc. Examples of color vision deficiencies include protan defects, deutan defects, and tritan defects. Protan defects include protanopia (an insensitivity to red light) and protanomaly (a reduced sensitivity to red light), and are associated with mutations in the L-Opsin gene (OPN1LW). Deutan defects include deuteranopia (an insensitivity to green light) and deutanomaly (a reduced sensitivity to green light), and are associated with mutations in the M-Opsin gene (OPN1MW). Tritan defects include tritanopia (an insensitivity to blue light) and tritanomaly (a reduced sensitivity to blue light), and are associated with mutations in the S-Opsin gene (OPN1SW).

Age-related macular degeneration. Age-related macular degeneration (AMD) is one of the leading causes of vision loss in people over the age of 50 years. AMD mainly affects central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The vision loss in this condition results from a gradual deterioration of photoreceptors in the macula. Side (peripheral) vision and night vision are generally not affected.

Researchers have described two major types of age-related macular degeneration, known as the dry, or “nonexudative” form, and the wet, or “exudative” or “neovascular”, form, both of which may be treated by delivering transgenes in the context of the subject polynucleotide cassettes.

Dry AMD is characterized by a buildup of yellow deposits called drusen between the retinal pigment epithelium and the underlying choroid of the macula, which may be observed by Fundus photography. This results in a slowly progressive loss of vision. The condition typically affects vision in both eyes, although vision loss often occurs in one eye before the other. Other changes may include pigment changes and RPE atrophy. For example, in certain cases called central geographic atrophy, or “GA”, atrophy of the retinal pigment epithelial and subsequent loss of photoreceptors in the central part of the eye is observed. Dry AMD has been associated with mutations in CD59 and genes in the complement cascade.

Wet AMD is a progressed state of dry AMD, and occurs in abut 10% of dry AMD patients. Pathological changes include retinal pigment epithelial cells (RPE) dysfunction, fluid collecting under the RPE, and choroidal neovascularization (CNV) in the macular area. Fluid leakage, RPE or neural retinal detachment and bleeding from ruptured blood vessels can occur in severe cases. Symptoms of wet AMD may include visual distortions, such as straight lines appearing wavy or crooked, a doorway or street sign looking lopsided, or objects appearing smaller or farther away than they really are; decreased central vision; decreased intensity or brightness of colors; and well-defined blurry spot or blind spot in the field of vision. Onset may be abrupt and worsen rapidly. Diagnosis may include the use of an Amsler grid to test for defects in the subject's central vision (macular degeneration may cause the straight lines in the grid to appear faded, broken or distorted), fluorescein angiogram to observe blood vessel or retinal abnormalities, and optical coherence tomography to detect retina swelling or leaking blood vessels. A number of cellular factors have been implicated in the generation of CNV, among which are vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), pigment epithelium-derived factor (PEDF), hypoxia inducible factor (HIF), angiopoietin (Ang), and other cytokines, mitogen-activated protein kinases (MAPK) and others.

Macular telangiectasia. Macular telangiectasia (MacTel) is a form of pathologically dilated blood vessels (telangiectasia) in the parafoveal region of the macula. The tissue deteriorates and the retinal structure becomes scarred due to the development of liquid-filled cysts, which impairs nutrition of the photoreceptor cells and destroys vision permanently. There are two types of MacTel, type 1 and type 2. Macular telangiectasia type 2 is a bilateral disease, whose prevalence has recently been shown to be as high as 0.1% in persons 40 years and older. Biomicroscopy may show reduced retinal transparency, crystalline deposits, mildly ectatic capillaries, blunted venules, retinal pigment plaques, foveal atrophy, and neovascular complexes. Fluorescein angiography shows telangiectatic capillaries predominantly temporal to the foveola in the early phase and a diffuse hyperfluorescence in the late phase. High-resolution optical coherence tomography (OCT) may reveal disruption of the photoreceptor inner segment-outer segment border, hyporeflective cavities at the level of the inner or outer retina, and atrophy of the retina in later stages. In Type 1 macular telangiectasia, the disease almost always occurs in one eye, which differentiates it from Type 2. While MacTel does not usually cause total blindness, it commonly causes loss of the central vision, which is required for reading and driving vision, over a period of 10-20 years.

Retinitis pigmentosa. Retinitis Pigmentosa (RP) is a group of inherited disorders characterized by progressive peripheral vision loss and night vision difficulties (nyctalopia) that can lead to central vision loss. Presenting signs and symptoms of RP vary, but the classic ones include nyctalopia (night blindness, most commonly the earliest symptom in RP); visual loss (usually peripheral, but in advanced cases, central visual loss); and photopsia (seeing flashes of light). Because RP is a collection of many inherited diseases, significant variability exists in the physical findings. Ocular examination involves assessment of visual acuity and pupillary reaction, as well as anterior segment, retinal, and funduscopic evaluation. In some instances, the RP is one aspect of a syndrome, e.g. syndromes that are also associated with hearing loss (Usher syndrome, Waardenburg syndrome, Alport syndrome, Refsum disease); Kearns-Sayre syndrome (external ophthalmoplegia, lid ptosis, heart block, and pigmentary retinopathy); Abetalipoproteinemia (Fat malabsorption, fat-soluble vitamin deficiencies, spinocerebellar degeneration, and pigmentary retinal degeneration); mucopolysaccharidoses (eg, Hurler syndrome, Scheie syndrome, Sanfilippo syndrome); Bardet-Biedl syndrome (Polydactyly, truncal obesity, kidney dysfunction, short stature, and pigmentary retinopathy); and neuronal ceroid lipofuscinosis (Dementia, seizures, and pigmentary retinopathy; infantile form is known as Jansky-Bielschowsky disease, juvenile form is Vogt-Spielmeyer-Batten disease, and adult form is Kufs syndrome). Retinitis pigmentosa is most commonly associated with mutations in the RHO, RP2, RPGR, RPGRIP1, PDE6A, PDE6B, MERTK, PRPH2, CNGB1, USH2A, ABCA4, BBS genes.

Diabetic retinopathy. Diabetic retinopathy (DR) is damage to the retina caused by complications of diabetes, which can eventually lead to blindness. Without wishing to be bound by theory, it is believed that hyperglycemia-induced intramural pericyte death and thickening of the basement membrane lead to incompetence of the vascular walls. These damages change the formation of the blood-retinal barrier and also make the retinal blood vessels become more permeable.

There are two stages of diabetic retinopathy: non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR). Nonproliferative diabetic retinopathy is the first stage of diabetic retinopathy, and is diagnosed by fundoscopic exam and coexistent diabetes. In cases of reduced vision, fluorescein angiography may be done to visualize the vessles in the back of the eye to and any retinal ischemia that may be present. All people with diabetes are at risk for developing NPDR, and as such, would be candidates for prophylactic treatment with the subject vectors. Proliferative diabetic retinopathy is the second stage of diabetic retinopathy, characterized by neovascularization of the retina, vitreous hemorrhage, and blurred vision. In some instances, fibrovascular proliferation causes tractional retinal detachment. In some instances, the vessels can also grow into the angle of the anterior chamber of the eye and cause neovascular glaucoma. Individuals with NPDR are at increased risk for developing PDR, and as such, would be candidates for prophylactic treatment with the subject vectors.

Diabetic macular edema. Diabetic macular edema (DME) is an advanced, vision-limiting complication of diabetic retinopathy that affects nearly 30% of patients who have had diabetes for at least 20 years, and is responsible for much of the vision loss due to DR. It results from retinal microvascular changes that compromise the blood-retinal barrier, causing leakage of plasma constituents into the surrounding retina and, consequently, retinal edema. Without wishing to be bound by theory, it is believed that hyperglycemia, sustained alterations in cell signaling pathways, and chronic microvascular inflammation with leukocyte-mediated injury leads to chronic retinal microvascular damage, which triggers an increase in intraocular levels of VEGF, which in turn increases the permeability of the vasculature.

Patients at risk for developing DME include those who have had diabetes for an extended amount of time and who experience one or more of severe hypertension (high blood pressure), fluid retention, hypoalbuminemia, or hyperlipidemia. Common symptoms of DME are blurry vision, floaters, double vision, and eventually blindness if the condition is allowed to progress untreated. DME is diagnosed by funduscopic examination as retinal thickening within 2 disc diameters of the center of the macula. Other methods that may be employed include Optical coherence tomography (OCT) to detect retinal swelling, cystoid edema, and serous retinal detachment; fluorescein angiography, which distinguishes and localizes areas of focal versus diffuse leakage, thereby guiding the placement of laser photocoagulation if laser photocoagulation is to be used to treat the edema; and color stereo fundus photographs, which can be used to evaluate long-term changes in the retina. Visual acuity may also be measured, especially to follow the progression of macular edema and observe its treatment following administration of the subject pharmaceutical compositions.

Retinal vein occlusions. A retinal vein occlusion (RVO) is a blockage of the portion of the circulation that drains the retina of blood. The blockage can cause back-up pressure in the capillaries, which can lead to hemorrhages and also to leakage of fluid and other constituents of blood.

Glaucoma. Glaucoma is a term describing a group of ocular (eye) disorders that result in optic nerve damage, often associated with increased fluid pressure in the eye (intraocular pressure)(IOP). The disorders can be roughly divided into two main categories, “open-angle” and “closed-angle” (or “angle closure”) glaucoma. Open-angle glaucoma accounts for 90% of glaucoma cases in the United States. It is painless and does not have acute attacks. The only signs are gradually progressive visual field loss, and optic nerve changes (increased cup-to-disc ratio on fundoscopic examination). Closed-angle glaucoma accounts for less than 10% of glaucoma cases in the United States, but as many as half of glaucoma cases in other nations (particularly Asian countries). About 10% of patients with closed angles present with acute angle closure crises characterized by sudden ocular pain, seeing halos around lights, red eye, very high intraocular pressure (>30 mmHg), nausea and vomiting, suddenly decreased vision, and a fixed, mid-dilated pupil. It is also associated with an oval pupil in some cases. Modulating the activity of proteins encoded by DLK, NMDA, INOS, CASP-3, Bcl-2, or Bcl-xl may treat the condition.

Sorsby's fundus dystrophy. Sorsby's fundus dystrophy is an autosomal dominant, retinal disease associated with mutations in the TIMP3 gene. Clinically, early, mid-peripheral, drusen and colour vision deficits are found. Some patients complain of night blindness. Most commonly, the presenting symptom is sudden acuity loss, manifest in the third to fourth decades of life, due to untreatable submacular neovascularisation. Histologically, there is accumulation of a confluent lipid containing material 30 μm thick at the level of Bruch's membrane.

Vitelliform macular dystrophy. Vitelliform macular dystrophy is a genetic eye disorder that can cause progressive vision loss. Vitelliform macular dystrophy is associated with the buildup of fatty yellow pigment (lipofuscin) in cells underlying the macula. Over time, the abnormal accumulation of this substance can damage cells that are critical for clear central vision. As a result, people with this disorder often lose their central vision, and their eyesight may become blurry or distorted. Vitelliform macular dystrophy typically does not affect side (peripheral) vision or the ability to see at night.

Researchers have described two forms of vitelliform macular dystrophy with similar features. The early-onset form (known as Best disease) usually appears in childhood; the onset of symptoms and the severity of vision loss vary widely. It is associated with mutations in the VMD2/BEST1 gene. The adult-onset form (Adult vitelliform macular dystrophy) begins later, usually in mid-adulthood, and tends to cause vision loss that worsens slowly over time. It has been associated with mutations in the PRPH2 gene. The two forms of vitelliform macular dystrophy each have characteristic changes in the macula that can be detected during an eye examination.

Rod-cone dystrophy. Rod-cone dystrophies are a family of progressive diseases in which rod dysfunction, which leads to night blindness and loss of peripheral visual field expanses, is either the prevailing problem or occurring at least as severely as cone dysfunction. A scallop-bordered lacunar atrophy may be seen in the midperiphery of the retina. The macula is only mildly involved by clinical examination although central retinal thinning is seen in all cases. Dyschromatopsia is mild early and usually becomes more severe. The visual fields are moderately to severely constricted although in younger individuals a typical ring scotoma is present. The peripheral retina contains ‘white dots’ and often resembles the retinal changes seen in retinitis punctate albescens. Retinitis pigmentosa is the main group of diseases included under this definition and, as a whole, is estimated to affect approximately one in every 3,500 people. Depending on the classification criteria used, about 60-80% of all retinitis pigmentosa patients have a clear-cut rod-cone dystrophy pattern of retinal disease and once other syndromic forms are taken into account, about 50-60% of all retinitis pigmentosas fall in the rod-cone dystrophy nonsyndromic category.

Leber's congenital amaurosis. Leber's congenital amaurosis (LCA) is a severe dystrophy of the retina that typically becomes evident in the first year of life. Visual function is usually poor and often accompanied by nystagmus, sluggish or near-absent pupillary responses, photophobia, high hyperopia, and keratoconus. Visual acuity is rarely better than 20/400. A characteristic finding is Franceschetti's oculo-digital sign, comprising eye poking, pressing, and rubbing. The appearance of the fundus is extremely variable. While the retina may initially appear normal, a pigmentary retinopathy reminiscent of retinitis pigmentosa is frequently observed later in childhood. The electroretinogram (ERG) is characteristically “nondetectable” or severely subnormal. Mutations in 17 genes are known to cause LCA: GUCY2D (locus name: LCA1), RPE65 (LCA2), SPATA7 (LCA3), AIPL1 (LCA4), LCA5 (LCA5), RPGRIP1 (LCA6), CRX (LCAT), CRB1 (LCA5), NMNAT1 (LCA5), CEP290 (LCA10), IMPDH1 (LCA11), RD3 (LCA12), RDH12 (LCA13), LRAT (LCA14), TULP1 (LCA15), KCNJ13 (LCA16), and IQCB1. Together, mutations in these genes are estimated to account for over half of all LCA diagnoses. At least one other disease locus for LCA has been reported, but the gene is not known.

X-linked retinoschisis. X-linked retinoschisis (XLRS) is characterized by symmetric bilateral macular involvement with onset in the first decade of life, in some cases as early as age three months. Fundus examination shows areas of schisis (splitting of the nerve fiber layer of the retina) in the macula, sometimes giving the impression of a spoke wheel pattern. Schisis of the peripheral retina, predominantly inferotemporally, occurs in approximately 50% of individuals. Affected males typically have vision of 20/60 to 20/120. Visual acuity often deteriorates during the first and second decades of life but then remains relatively stable until the fifth or sixth decade. The diagnosis of X-linked juvenile retinoschisis is based on fundus findings, results of electrophysiologic testing, and molecular genetic testing. RS1 is the only gene known to be associated with X-linked juvenile retinoschisis.

An individual affected by a cone cell disorder or at risk for developing a cone cell disorder can be readily identified using techniques to detect the symptoms of the disorder as known in the art, including, without limitation, fundus photography; Optical coherence tomography (OCT); adaptive optics (AO); electroretinography, e.g. ERG, color ERG (cERG); color vision tests such as pseudoisochromatic plates (Ishihara plates, Hardy-Rand-Ritter polychromatic plates), the Farnsworth-Munsell 100 hue test, the Farnsworth's panel D-15, the City university test, Kollner's rule, and the like; and visual acuity tests such as the ETDRS letters test, Snellen visual acuity test, visual field test, contrast sensitivity test, and the like; as will be known by the ordinarily skilled artisan. Additionally or alternatively, the individual affected by a cone cell disorder or at risk for developing a cone cell disorder can be readily identified using techniques to detect gene mutations that are associated with the cone cell disorder as known in the art, including, without limitation, PCR, DNA sequence analysis, restriction digestion, Southern blot hybridization, mass spectrometry, etc. In some embodiments, the method comprises the step of identifying the individual in need of a cone cell therapy. In such instances, any convenient method for determining if the individual has the symptom(s) of a cone cell disorder or is at risk for developing a cone cell disorder, for example by detecting the symptoms described herein or known in the art, by detecting a mutation in a gene as herein or as known in the art, etc. may be utilized to identify the individual in need of a cone cell therapy.

In practicing the subject methods, the subject composition is typically delivered to the retina of the subject in an amount that is effective to result in the expression of the transgene in the cone cells. In some embodiments, the method comprises the step of detecting the expression of the transgene in the cone cells.

There are a number of ways to detect the expression of a transgene, any of which may be used in the subject embodiments. For example, expression may be detected directly, i.e. by measuring the amount of gene product, for example, at the RNA level, e.g. by RT-PCR, Northern blot, RNAse protection; or at the protein level, e.g. by Western blot, ELISA, immunohistochemistry, and the like. As another example, expression may be detected indirectly, i.e. by detecting the impact of the gene product on the viability or function of the cone photoreceptor in the subject. For example, if the gene product encoded by the transgene improves the viability of the cone cell, the expression of the transgene may be detected by detecting an improvement in viability of the cone cell, e.g. by fundus photography, Optical coherence tomography (OCT), Adaptive Optics (AO), and the like. If the gene product encoded by the transgene alters the activity of the cone cell, the expression of the transgene may be detected by detecting a change in the activity of the cone cell, e.g. by electroretinogram (ERG) and color ERG (cERG); functional adaptive optics; color vision tests such as pseudoisochromatic plates (Ishihara plates, Hardy-Rand-Ritter polychromatic plates), the Farnsworth-Munsell 100 hue test, the Farnsworth's panel D-15, the City university test, Kollner's rule, and the like; and visual acuity tests such as the ETDRS letters test, Snellen visual acuity test, visual field test, contrast sensitivity test, and the like, as a way of detecting the presence of the delivered polynucleotide. In some instances, both an improvement in viability and a modification in cone cell function may be detected.

In some embodiments, the subject method results in a therapeutic benefit, e.g. preventing the development of a disorder, halting the progression of a disorder, reversing the progression of a disorder, etc. In some embodiments, the subject method comprises the step of detecting that a therapeutic benefit has been achieved. The ordinarily skilled artisan will appreciate that such measures of therapeutic efficacy will be applicable to the particular disease being modified, and will recognize the appropriate detection methods to use to measure therapeutic efficacy. For example, therapeutic efficacy in treating macular degeneration may be observed as a reduction in the rate of macular degeneration or a cessation of the progression of macular degeneration, effects which may be observed by, e.g., fundus photography, OCT, or AO, by comparing test results after administration of the subject composition to test results before administration of the subject composition. As another example, therapeutic efficacy in treating a progressive cone dysfunction may be observed as a reduction in the rate of progression of cone dysfunction, as a cessation in the progression of cone dysfunction, or as an improvement in cone function, effects which may be observed by, e.g., ERG and/or cERG; color vision tests; functional adaptive optics; and/or visual acuity tests, for example, by comparing test results after administration of the subject composition to test results before administration of the subject composition and detecting a change in cone viability and/or function. As a third example, therapeutic efficacy in treating a color vision deficiency may be observed as an alteration in the individual's perception of color, e.g. in the perception of red wavelengths, in the perception of green wavelengths, in the perception of blue wavelengths, effects which may be observed by, e.g., cERG and color vision tests, for example, by comparing test results after administration of the subject composition to test results before administration of the subject composition and detecting a change in cone viability and/or function.

Expression of the transgene using the subject transgene is expected to be robust. Accordingly, in some instances, the expression of the transgene, e.g. as detected by measuring levels of gene product, by measuring therapeutic efficacy, et.c, may be observed two months or less after administration, e.g. 4, 3 or 2 weeks or less after administration, for example, 1 week after administration of the subject composition. Expression of the transgene is also expected to persist over time. Accordingly, in some instances, the expression of the transgene, e.g. as detected by measuring levels of gene product, by measuring therapeutic efficacy, etc., may be observed 2 months or more after administration of the subject composition, e.g., 4, 6, 8, or 10 months or more, in some instances 1 year or more, for example 2, 3, 4, or 5 years, in certain instances, more than 5 years.

In certain embodiments, the method comprises the step of detecting expression of the transgene in the cone cells, wherein expression is enhanced relative to expression from a polynucleotide cassette not comprising the one or more improved elements of the present disclosure, i.e. a reference control, e.g. the pR2.1 promoter or variants thereof (e.g. pR1.7, pR1.5, pR1.1, etc.) as disclosed in, e.g., US Application No. 2013/0317091, or the synthetic IRBP/GNAT2 promoter as disclosed in US Application No. 2014/0275231; the full disclosures of which are incorporated herein by reference. Typically, expression will be enhanced 2-fold or more relative to the expression from a reference, i.e. a control polynucleotide cassette, e.g. as known in the art, for example 3-fold, 4-fold, or 5-fold or more, in some instances 10-fold, 20-fold or 50-fold or more, e.g. 100-fold, as evidenced by, e.g. earlier detection, higher levels of gene product, a stronger functional impact on the cells, etc.

Typically, if the subject composition is an rAAV comprising the subject a polynucleotide cassette of the present disclosure, an effective amount to achieve a change in will be about 1×108 vector genomes or more, in some cases 1×109, 1×1010, 1×1011, 1×1012, or 1×1013 vector genomes or more, in certain instances, 1×1014 vector genomes or more, and usually no more than 1×1015 vector genomes. In some cases, the amount of vector genomes that is delivered is at most about 1×1015 vector genomes, e.g. 1×1014 vector genomes or less, for example 1×1013, 1×1012, 1×1011, 1×1010, or 1×109 vector genomes or less, in certain instances 1×108 vector genomes, and typically no less than 1×108 vector genomes. In some cases, the amount of vector genomes that is delivered is 1×1010 to 1×1011 vector genomes. In some cases, the amount of vector genomes that is delivered is 1×1010 to 3×1012 vector genomes. In some cases, the amount of vector genomes that is delivered is 1×109 to 3×1013 vector genomes. In some cases, the amount of vector genomes that is delivered is 1×108 to 3×1014 vector genomes.

In some cases, the amount of pharmaceutical composition to be administered may be measured using multiplicity of infection (MOI). In some cases, MOI may refer to the ratio, or multiple of vector or viral genomes to the cells to which the nucleic may be delivered. In some cases, the MOI may be 1×106. In some cases, the MOI may be 1×105-1×107. In some cases, the MOI may be 1×104-1×108. In some cases, recombinant viruses of the disclosure are at least about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, and 1×1018 MOI. In some cases, recombinant viruses of this disclosure are 1×108 to 3×1014 MOI. In some cases, recombinant viruses of the disclosure are at most about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017 and 1×1018 MOI.

In some aspects, the amount of pharmaceutical composition comprises about 1×108 to about 1×1015 particles of recombinant viruses, about 1×109 to about 1×1014 particles of recombinant viruses, about 1×1010 to about 1×1013 particles of recombinant viruses, or about 1×1011 to about 3×1012 particles of recombinant viruses.

Individual doses are typically not less than an amount required to produce a measurable effect on the subject, and may be determined based on the pharmacokinetics and pharmacology for absorption, distribution, metabolism, and excretion (“ADME”) of the subject composition or its by-products, and thus based on the disposition of the composition within the subject. This includes consideration of the route of administration as well as dosage amount, which can be adjusted for subretinal (applied directly to where action is desired for mainly a local effect), intravitreal (applied to the vitreaous for a pan-retinal effect), or parenteral (applied by systemic routes, e.g. intravenous, intramuscular, etc.) applications. Effective amounts of dose and/or dose regimen can readily be determined empirically from preclinical assays, from safety and escalation and dose range trials, individual clinician-patient relationships, as well as in vitro and in vivo assays such as those described herein and illustrated in the Experimental section, below.

All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

General methods in molecular and cellular biochemistry can be found in such standard textbooks as Molecular Cloning: A Laboratory Manual, 3rd Ed. (Sambrook et al., HaRBor Laboratory Press 2001); Short Protocols in Molecular Biology, 4th Ed. (Ausubel et al. eds., John Wiley & Sons 1999); Protein Methods (Bollag et al., John Wiley & Sons 1996); Nonviral Vectors for Gene Therapy (Wagner et al. eds., Academic Press 1999); Viral Vectors (Kaplift & Loewy eds., Academic Press 1995); Immunology Methods Manual (I. Lefkovits ed., Academic Press 1997); and Cell and Tissue Culture: Laboratory Procedures in Biotechnology (Doyle & Griffiths, John Wiley & Sons 1998), the disclosures of which are incorporated herein by reference. Reagents, cloning vectors, and kits for genetic manipulation referred to in this disclosure are available from commercial vendors such as BioRad, Stratagene, Invitrogen, Sigma-Aldrich, and ClonTech.

Background

New therapies are needed for the treatment of many cone photoreceptor associated disorders, including macular dystrophies such as cone-rod dystrophy, cone dystrophy, Stargardt macular dystrophy, and achromatopsia; color vision disorders such as protan, deutan, and tritan defects; and vision disorders of the central macula such as age-related macular degeneration, macular telangiectasia, retinitis pigmentosa, diabetic retinopathy, retinal vein occlusions, glaucoma, Sorsby's fundus dystrophy, adult vitelliform macular dystrophy, Best's disease, and X-linked retinoschisis. As these vision disorders are associated with a loss of function and/or viability of the cone photoreceptors, it is hypothesized that these disorders may be treatable by delivering a therapeutic gene to cone photoreceptors to rescue cone viability and function.

To that end, the polynucleotide cassette “pMNTC” was designed in which enhancer, promoter, 5′UTR, intron, Kozak, and polyadenylation sequences were designed for cone-specific expression (FIG. 10a). The cassette included an LCR enhancer sequence from the L- and M-opsin genomic locus and a truncated promoter sequence from the M-Opsin gene, comprising about 140 nucleotides upstream of the transcriptional start site. In addition, the cassette included a 5′ untranslated region (5′ UTR) based on the M-opsin 5′UTR but modified to have minimal secondary structure (see FIG. 3) and to include additional sequence at its 3′ end into which an intron was inserted. The intronic sequence used was a pSI chimeric intron having the 5′-donor site from the first intron of the human β-globin gene and the branch and 3′-acceptor site from the intron that lies between the leader and the body of an immunoglobulin gene heavy chain variable region (Bothwell, A. L. et al. (1981) Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a gamma 2a variable region. Cell 24, 625-37). The sequences of the donor and acceptor sites, along with the branchpoint site, were changed to match the consensus sequences for splicing (Senapathy, P., Shapiro, M. B. and Harris, N. L. (1990) Meth. Enzymol. 183, 252-78). Also included in the pMNTC polynucleotide cassette was a strong Kozak sequence and an SV40 polyadenylation sequence.

Experiments were also performed to identify the best AAV with which to deliver transgenes to cone cells. Successful delivery of polynucleotides to cells of the retina for the purposes of gene therapy has been achieved using viral vectors such as AAV and lentivirus. However, these viruses must be injected subretinally to reach the cells of the non-human primate (NHP) retina, a procedure that carries with it the risk of retinal damage. A less disruptive approach is administration by intravitreal injection. However, efficient transduction of cone photoreceptors following intravitreal delivery of AAV or lentivirus has never been demonstrated: while reports exist of AAVs with the ability to transduce retinal cone cells with high efficiency (Merigan et al. IOVS 2008, 49 E-abstract 4514), later reports have questioned the efficacy of these vectors (Yin et al. IOVS 2011, 52(5):2775-2783).

Results

Directed evolution of AAV2 has led to the identification of the viral variant “7m8” that is able to transduce photoreceptors better than wild type AAV2 (Dalkara et al. Sci Transl Med 2013). However, the retina contains two types of photoreceptors—rods and cones—and no reports exist demonstrated whether AAV2-7m8 can transduce cone photoreceptors, per se, and more particularly, cone photoreceptors in the highly cone-enriched area of the fovea. To test this possibility, we delivered AAV2-7m8 carrying an expression cassette of the ubiquitous promoter CMV operably linked to GFP to the retina of African Green monkey by intravitreal injection. Intravitreally delivered AAV2-7m8.CMV.GFP appeared to transduce retinal cells in the fovea centralis (the 0.35 mm diameter rod-free region of retina at the center of the foveal pit) and parafovea (the lip of the depression) of primates more efficiently than intravitreally-delivered AAV2 or other AAV variants previously shown in the art to transduce retinal cells. Neither AAV2-7m8 nor the other AAVs tested tested appeared to be able to transduce the cones of the primate fovea, the 1.5 mm-diameter cone-enriched region of retina that surrounds the foveola and forms the slopes of the pit (FIG. 5).

We next packaged a genome comprising pMNTC operably linked to GFP within the AAV2-7m8 capsid, and assessed the ability of this vector composition to express the GFP transgene in cone cells in vivo when injected intravitreally. Expression was evaluated in a number of species with varying numbers of retinal cones cells among total photoreceptors, including mouse (3% cones), rat (1% cones), gerbil (13% cones), and nonhuman primate (5% cones). Contrary to our results in FIG. 5, strong gene expression could be detected throughout the nonhuman primate fovea (FIG. 6). These data indicate that intravitreally delivered AAV2-7m8 can, in fact, transduce retinal cones, and that pMNTC acts as a robust expression cassette in cone cells. Robust reporter gene expression was also seen in the intravireally injected retina of the rat (data not shown) and gerbil (FIG. 8A), with expression levels and anatomic location correlating with cone abundance and location in all species.

To determine the cell-specificity of pMNTC-directed expression, whole mounts of transduced mouse retina were analyzed by immunohistochemistry using an antibody that is specific for cone L and M opsins. The expression of L/M opsin, which labels the outer segments of cone photoreceptors only, was observed in virtually all of the cones of the mouse retina that expressed GFP from the AAV2-7m8.MNTC.GFP vector (FIG. 7), indicating that MNTC-directed expression of transgenes is highly cone-specific. Moreover 80% or more of the cone outer segments that were labelled by the L/M opsin-specific antibody also expressed the GFP transgene, indicating that AAV2-7m8 transduces cones highly efficiently (FIG. 7).

We next compared the ability of pMNTC to promote expression in cone cells to that of pR2.1. pR2.1 comprises the human L/M opsin enhancer (“LCR”) and the promoter region from the human L-Opsin gene. In addition, pR2.1 comprises the L-Opsin 5′UTR fused to additional 5′UTR sequence at its 3′ end, into which modified SV40 late 16s intronic sequence has been inserted. This is followed by the L-Opsin Kozak sequence, which is then typically linked in-frame to a transgene. At the end of the cassette is an SV40 polyA tail.

Viral preparations of AAV2-7m8.MNTC.GFP and AAV2-7m8.pR2.1.GFP were delivered intravitreally to the retinas of gerbils and nonhuman primates in vivo, and the retinas imaged in vivo 2 weeks, 4 weeks, 8 weeks, and 12 weeks later by fundus autofluorescence and OCT. GFP reporter expression was detected sooner, more strongly, and in more cones in gerbil retina transduced with rAAV carrying the pMNTC.GFP expression cassette than in gerbil retinas carrying the pR2.1.GFP expression cassette (FIG. 8B). Likewise, GFP reporter expression was detected sooner and in more cones in nonhuman primate retinas transduced with rAAV carrying the pMNTC.GFP expression cassette as compared to NHP retinas transduced with the pR2.1 expression cassette (FIG. 9, n=4 eyes). In both gerbils and NHP, GFP was consistently observed to be stronger from pMNTC than from pR2.1 throughout the duration of the study.

To determine the contribution of each of the elements in the pMNTC expression cassette to the overall improvement in expression, a series of expression constructs were cloned in which each of the elements in pMNTC was substituted one-by-one with the corresponding element from the pR2.1 expression cassette. These constructs were then packaged into AAV2-7m8 and delivered by intravitreal injection to the gerbil retina. Gerbil retinas were assessed 4 and 8 weeks later in vivo by in vivo bioluminescence (IVIS imaging system, PerkinElmer), which provides a quantitative readout of reporter expression across the entire eye.

As expected, expression of the luciferase reporter under the control of pMNTC was higher than expression of the luciferase reporter under the control of pR2.1. Replacement of the pMNTC promoter sequence with the pR2.1 promoter sequence having the most sequence homology to it (SEQ ID NO:83) reduced expression (construct pMNTC_pR2.1 L3′P), as did the inclusion of pR2.1 promoter sequence that lies more distal to the 5′UTR of pR2.1 (SEQ ID NO:82) (construct pMNTCpR2.1-L5′P). Expression was also reduced by the introduction into the pMNTC 5′UTR of two false start sequences (“AUG1” and “AUG2”) that were observed in the pR2.1 5′UTR (construct pMNTC_2.1-AUG1/2). Interestingly, expression was not reduced when the pMNTC 5′UTR was replaced with a modified pR2.1 5′UTR sequence in which these false starts had been removed (SEQ ID NO:87, nucleotide 17 changed to C, nt 61and 62 changed to CA) (pMNTC_pR2.1-5′UTR), suggesting that the pR2.1 5′UTR would promote strong expression in cone cells but for the false AUGs in the pR2.1 5′UTR element. Also interestingly, the pR2.1 intron (SEQ ID NO:59) appeared to provide more robust expression than the pSI chimeric intron of pMNTC, suggesting that inclusion of the pR2.1 intron in the polynucleotide cassettes of the present disclosure may be used to further improve expression in cone cells. Lastly, removal of the L/M enhancer (found in both pR2.1 and pMNTC) reduced expression as well. While the polyA tailed seemed at first to also have a significant impact on expression, re-sequencing of the pMNTC construct comprising this pR2.1 element revealed that the polyA tail was not operably linked to the transgene, thereby explaining why only background levels of expression were observed from this construct. Thus, the L/M opsin LCR, the inclusion of the M opsin core promoter rather than the L opsin promoter, and the exclusion of false starts in the 5′UTR all contribute to the enhancement in gene expression achieved using the pMNTC promoter.

In conclusion, we have identified an AAV variant, the AAV variant comprising a 7m8 peptide in the GH loop, which may be used for the intravitreal delivery of polynucleotides to retinal cones. Likewise, we have identified a number of polynucleotide cassette elements that may be used to promote strong expression in cone photoreceptors. Together, these discoveries represent improvements that may facilitate the development of therapeutic agents for cone-associated disorders.

Materials and Methods

Transgene expression in vitro in WERI-RB-1 cells. WERI-Rb-1 retinoblastoma cells expressing cone photoreceptor pigments cells are transfected with a polynucleotide cassette of the present disclosure according to the method described by Shaaban and Deeb, 1998; IOVS 39(6)885-896. The polynucleotide cassettes are transfected as plasmid DNA using well established techniques of molecular biology, such as cloning (Maniatis et al.) or via de novo DNA synthesis. All regulatory elements are placed in the cassette and used to drive the enhanced GFP protein. Plasmid DNA is then introduced into cells using established techniques for non-viral transfection, for example using a lipid-based transfection reagent (Altogen Biosystems, NV) or Lipofectamine LTX (Life Technologies). Cells are then cultured for 72 hours and eGFP expression is measured using flow cytometry and fluorescence microscopy. Transgene expression in cells transfected with the polynucleotide cassette of the present invention (i.e., constructs designed for cone photoreceptor expression) is compared to the un-optimized counterparts (i.e., those based on pR2.1) and is found to be stronger from cassettes carrying improved elements

In vitro expression is also evaluated using other mammalian cell lines that express cone opsins, such as 661W cells (Tan et al., IOVS 2004; 45(3) 764-768).

Similarly, in vitro expression is evaluated using non-photoreceptor cell lines that have been engineered to express cone photoreceptor-specific proteins. Such a system has been described with HEK293 cells that have been genetically engineered to express CRX/Spl (Khani et al., IOVS 2007; 48: 3954). Marker genes are also used (eGFP, dsRed, mCherry, luciferase) as well as physiologic genes (opsin, ACHR genes). Physiologic genes are tested by examining mRNA levels (e.g., by RT-PCR) or protein levels (e.g., by ELISA or Western blot).

Animal care. All experiments conformed to the principles regarding the care and use of animals adopted by the American Physiological Society and the Society for Neuroscience, and were approved by the Institutional Animal Care and Use Committee (IACUC).

Small animal studies. The expression of the gene product encoded by the coding sequence of the expression cassettes are evaluated in vivo in mice, rats, and gerbils. This is accomplished by intravitreal injection in vivo of an rAAV preparation comprising the expression cassette (Li et al., 2008; Mol Vis 48: 332-338). Note that electroporation of plasmid DNA may be performed instead (Matsuda/Cepko).

Mouse studies. Mice used in this study were C57BL/6. Animals were anesthetized with ketamine/xylazine (110 mg/kg intraperitoneal). A beveled 34 gauge disposable needle loaded with test article was inserted into the vitreous of the eye, and 5.04×1010 vector genomes of rAAV in a volume of 1.5 μl was injected into the vitreous.

Gerbil and rat studies. Mongolian gerbils (Meriones unguiculatus) and brown Norway rats were used in this study. Pupils were dilated with 10% phenylephrine and 0.5% tropicamide. Animals were anesthetized with an intraperitoneal or intramuscular injection of 0.1-0.2 mL of a ketamine/xylazine solution (70 mg/mL ketamine and 10 mg/mL xylazine for rats; 25 mg/mL ketamine and 0.3 mg/mL xylazine for gerbils). A beveled 34 gauge disposable needle loaded with test article in a 100 μL Hamilton syringe was inserted into the vitreous of the eye through the sclera at an optimized superior-temporal point about 1 mm from Limbus. 1×1010-2×1010 vector genomes of test article (2×1010 vg of rAAV.GFP, or 1.15×1010 vg of rAAV.luciferase) in a 5 uL volume was injected slowly with a microinjection pump into the vitreous, after which the needle tip was held in the injected eye at the injected position for 10 seconds so as to ensure adequate test article dispensing. The needle was then withdrawn.

Non-human primate (NHP) studies. The polynucleotide cassettes and expression vectors are also tested in large animals. This is done by using AAV, for example using the techniques of Mancuso et al. Briefly, an AAV cassette is made, the AAV encapsidating the expression cassette is manufactured, and the viral prep is injected intravitreally (up to 170 uL in the vitreous) or subretinally (up to 3, 100 uL injections at different locations; vitrectomy may be performed prior to injection) in nonhuman primates. Expression is evaluated by reporter (GFP), color ERG, and/or behavioral testing using the Cambridge Color Test or on animals trained to make a saccade (eye movement) when a target enters the field of view. The saccades are monitored using an eye tracker. Prior to treatment animals are trained to perform a color vision test or to make a saccade when it sees a colored target. An ERG is performed to estimate the spectral sensitivity of the cones present. Data from the color vision test performance and the ERG provide evidence that the animal is dichromatic (colorblind). For animals that receive a vector carrying the GFP gene, expression is monitored using fundus imaging with RetCam II or similar device under light that produces excitation of the GFP. For animals receiving a photopigment gene that differs in spectral sensitivity compared to the animal's endogenous pigments, expression is monitored using the multifocal color ERG to measure spectral sensitivity at up to 106 different retinal locations, and by behavioral testing.

Baboons were sedated with 10-15 mg/kg ketamine following by sevofluorane. African Green monkeys were sedated with an intramuscular injection of 5:1 ketamine:xylazine mix (0.2 ml/kg of 100 mg/ml ketamine and 20 mg/ml xylazine). Mydriasis was achieved with topical 10% phenylephrine. An eye speculum was placed in the eye to facilitate injections. A drop of proparacaine hydrochloride 0.5% and then 5% betadine solution was applied, followed by a rinse with sterile saline. Baboons (FIG. 6) received 60 μl of a 3.4×1013 vg preparation of rAAV by intravitreal (ITV) injection to yield a final dose of 2.02×1012 vg per eye. African Green monkeys received 50 uL of a 1×1013 preparation of rAAV vector by ITV injection to yield a final dose of 5×1011 vg per eye. ITV injections to the central vitreous were administered using a 31-gauge 0.375 inch needle (Terumo) inserted inferotemporally at the level of the ora serrata ˜2 5 mm poster to the limbus under a surgical magnification to allow full visualization of extraocular and intraocular needle placement. Central vitreous placement was confirmed by direct observation of the needle tip at the time of the injection. Following ITV injections a topical triple antibiotic ointment was administered.

Slit-lamp biomicroscopy. The anterior segment of each monkey eye was examined by slit-lamp biomicroscopy during baseline screening and at week 4 (day 28), week 8 (day 56) and week 12 (day 84) post-injection to monitor inflammation. No abnormalities were observed.

Fundus examination and photography. Eye examination and fundus photography of rat and gerbil retinas was performed using a Phoenix Micron IV fundus microscope. All animals received a baseline screening/photographing to confirm ocular health, and then photographed at the designated timepoints to monitor the expression of the GFP transgene. Any change to the optic nerves and retina or appearance of gross lesions were recorded by a color fundus photography and expression of GFP was visualized using fluorescence fundus imaging with a fluorescein filter.

Retinal examination, fundus color and fluorescence photography, and autofluorescence OCT of NHP were performed by using a Topcon TRC-50EX retinal camera with Canon 6D digital imaging hardware and New Vision Fundus Image Analysis System software and Spectralis OCT Plus. All animals received a baseline imaging. GFP expression was also documented at week 2, 4, 8, and 12 post-intravitreal vector injection.

IVIS Imaging System. Expression of luciferase in the retina following delivery of rAAV.luciferase was quantified in vivo 2, 4 and 8 weeks post-intravitreal injection using an IVIS Imaging System. Gerbils were injected subcutaneously with 150 mg/kg luciferin (PerkinElmer) (15 mg/ml luciferin at a dose of 15 ml/kg). Approximately 22 minutes later, animals were sedated by inhalation of 4% isoflurane for 3-5 minutes. Immediately thereafter, animals were placed on the imaging platform in pairs, and the luminescence of the one eye of each animal quantified followed immediately by imaging of the contralateral eye. A naïve gerbil was used as a negative standard, with background levels of luminescence typically registering a luminescence of 1×104 photons/second. Bioluminescence verification using a phantom mouse (XPM-2 Perkin Elmer phantom mouse for bioluminescence imaging) was performed prior to imaging to ensure calibration of the imaging system.

Immunohistochemistry. Mice were euthanized with a lethal dose of sodium pentobarbital and tissues fixed via cardiac perfusion first with 0.13M phosphate buffered saline (PBS) pH 7.2-7.4 containing 2 units of heparin per mL, followed by 4% paraformaldehyde (PFA) in PBS, followed by 4% paraformaldehyde plus 1% glutaraldehyde in PBS. Glutaraldehyde served to keep the neural retina attached to the RPE so that the cone outer segments would remain intact. Each solution was warmed to ˜37° C. just prior to administration and ˜35-40 mL of perfusate was delivered at each stage. Once the perfusion was stopped, the mouse was wrapped in a moist paper towel and left to further fix for 2-3 hours before enucleation and dissection.

Permanent ink was used to mark the orientation of the eye, the anterior segment was removed, and the eye-cup was fixed in 4% PFA overnight at 4° C. and then stored in PBS at 4° C. Retinal whole-mounts were made by flattening the dissected retina between tissues soaked in 4% PFA for two hours and then transferring them to a culture plate for 6 more hours of fixation. Afterward, the PFA was replaced with PBS containing 0.03% sodium azide (Sigma).

Antibody labeling was carried out on a rotating table shaker. To block non-specific labeling, whole mounts were incubated overnight at 4° C. with a solution containing 5% donkey serum (Jackson ImmunoResearch, Cat #004-000-120), 1 mg/ml BSA (Jackson ImmunoResearch, Cat #001-000-161), and 0.03% Triton X-100 in PBS (pH 7.4). The primary antibody used in this study was rabbit anti red-green (L/M) opsin diluted 1:200 (Millipore, Cat #AB5405. Specimens were washed in PBS 3 times for 30 minutes each, then incubated at 4° C. overnight with DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride 1:10,000; Invitrogen, Cat #D-21490) plus secondary antibodies. The secondary antibody for the L/M-opsin antibody was Alexa Fluor 488 labeled donkey anti-rabbit IgG(H+L) diluted 1:200 in antibody dilution buffer (Invitrogen, Cat # A21206). The incubation with secondary antibody was followed by three 30 minute PBS washes, 30 minutes of post-fixation with 4% paraformaldehyde, and three more 30 minute PBS washes. Finally, the retinal slices were placed on slides with 2% DABCO in glycerol and covered with cover slips.

Microscopy. Widefield images of mouse retina whole mounts were acquired using a Nikon Eclipse E1000 with a 20× (open-air) objective and camera set with a 1.5× optical zoom. For each specimen, 50 optical sections were taken 0.5 μm apart and the M-opsin Z-stack was reconstructed in ImageJ. The Z-stack was oriented so that the lengths of the outer segments were in plane, and the distance between where antibody staining began and ended was measured as an estimate of the length of the outer segments. Further, a 3D projection of the Z-stack was generated and the number of cones with visible M-opsin in the outer segment could be quantified.

Confocal image slices were acquired using an Olympus FluoView™ FV1000. Sections were imaged using a 20× oil immersion lens (40 images taken 0.5 μm apart) and the Z-stacks were reconstructed in ImageJ. Channel exposure levels were balanced within and across images using Adobe Photoshop. For the retinal whole mounts, images were taken using a 10× open-air lens and mosaics were constructed with Adobe Photoshop's native mosaic construction software.

Experiments testing the tissue specificity of the polynucleotide cassettes. In this instance, a construct encoding GFP is injected via one or more routes of administration, such as intravitreal, subretinal, or intravenously. The animal is then sacrificed and tissues are analyzed by qPCR—to detect DNA sequences indicating presence of the construct—and GFP expression—to detect areas where the construct is actively expressed. Whereas absence of DNA sequence indicates lack of biodistribution to a given tissue, the presence of DNA sequence together with the lack of transgene expression (mRNA or protein level) indicates presence of vector but lack of expression in that tissue. In this way, the level of specificity for cone photoreceptors can be established, and used to determine the utility of this invention in terms of restricting expression to target cone photoreceptor cells without expression in non-targeted tissues such as optic nerve, liver, spleen, or brain tissue. Intravitreal AAV is known to biodistribute to the brain (Provost et al) so highly expressed, improved constructs for targeting cone photoreceptors would be useful to limit expression to target cells of the retina and limit potential adverse events associated with off-target transgene expression.

The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of the present invention is embodied by the appended claims.

<160> NUMBER OF SEQ ID NOS: 103

<210> SEQ ID NO: 1

<211> LENGTH: 494

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 1

ggatccggtt ccaggcctcg gccctaaata gtctccctgg gctttcaaga gaaccacatg 60

agaaaggagg attcgggctc tgagcagttt caccacccac cccccagtct gcaaatcctg 120

acccgtgggt ccacctgccc caaaggcgga cgcaggacag tagaagggaa cagagaacac 180

ataaacacag agagggccac agcggctccc acagtcaccg ccaccttcct ggcggggatg 240

ggtggggcgt ctgagtttgg ttcccagcaa atccctctga gccgcccttg cgggctcgcc 300

tcaggagcag gggagcaaga ggtgggagga ggaggtctaa gtcccaggcc caattaagag 360

atcaggtagt gtagggtttg ggagctttta aggtgaagag gcccgggctg atcccacagg 420

ccagtataaa gcgccgtgac cctcaggtga tgcgccaggg ccggctgccg tcggggacag 480

ggctttccat agcc 494

<210> SEQ ID NO: 2

<211> LENGTH: 494

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 2

ttatttagta gaaacggggt ttcaccatgt tagtcaggct ggtcgggaac tcctgacctc 60

aggagatcta cccgccttgg cctcccaaag tgctgggatt acaggcgtgt gccactgtgc 120

ccagccactt ttttttagac agagtcttgg tctgttgccc aggctagagt tcagtggcgc 180

catctcagct cactgcaacc tccgcctccc agattcaagc gattctcctg cctcgacctc 240

ccagtagctg ggattacagg tttccagcaa atccctctga gccgcccccg ggggctcgcc 300

tcaggagcaa ggaagcaagg ggtgggagga ggaggtctaa gtcccaggcc caattaagag 360

atcagatggt gtaggatttg ggagctttta aggtgaagag gcccgggctg atcccactgg 420

ccggtataaa gcaccgtgac cctcaggtga cgcaccaggg ccggctgccg tcggggacag 480

ggctttccat agcc 494

<210> SEQ ID NO: 3

<211> LENGTH: 568

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 3

ctaggcattg tcaagttgcc taagtcctgt tccatcaagg ctgtttactg atgtgcttcc 60

agggcactcc ccactcccag ccctttcctg cagcccaggg ctggttccta gcctctcagc 120

agacttaaga tgggcacctt ccacaaaggg gcagatgagt tgaggaaaac ttaactgata 180

cagttgtgcc agaagccaaa ataagaggcg tgccctttct atagccccat taaaagaaca 240

aaaaagtgga agcatcttca gtgaatatgg gtcagcacct cccagacctc agggagtcca 300

cttctgttca tcccagcacc cagcattgca tatccagatt atttgagccc aatctcttat 360

cctctgaaga acacaatcgg ctttggggcc acaaaaggtt taggtagtgg tttagggatt 420

tctaatccca aactttgtcc ttgggaggtt taggattagt attgatcatt cacagagccc 480

aagtgttttt agaggagggg ttttgtgggg tgggaggatc acctataaga ggactcagag 540

gggggtgtgg ggcatccatg agaaaaat 568

<210> SEQ ID NO: 4

<211> LENGTH: 1555

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 4

ccagggtgag attatgaggc tgagctgaga atatcaagac tgtaccgagt agggggcctt 60

ggcaagtgtg gagagcccgg cagctggggc agagggcgga gtacggtgtg cgtttacgga 120

cctcttcaaa cgaggtagga aggtcagaag tcaaaaaggg aacaaatgat gtttaaccac 180

acaaaaatga aaatccaatg gttggatatc cattccaaat acacaaaggc aacggataag 240

tgatccgggc caggcacaga aggccatgca cccgtaggat tgcactcaga gctcccaaat 300

gcataggaat agaagggtgg gtgcaggagg ctgaggggtg gggaaagggc atgggtgttt 360

catgaggaca gagcttccgt ttcatgcaat gaaaagagtt tggagacgga tggtggtgac 420

tggactatac acttacacac ggtagcgatg gtacactttg tattatgtat attttaccac 480

gatcttttta aagtgtcaaa ggcaaatggc caaatggttc cttgtcctat agctgtagca 540

gccatcggct gttagtgaca aagcccctga gtcaagatga cagcagcccc cataactcct 600

aatcggctct cccgcgtgga gtcatttagg agtagtcgca ttagagacaa gtccaacatc 660

taatcttcca ccctggccag ggccccagct ggcagcgagg gtgggagact ccgggcagag 720

cagagggcgc tgacattggg gcccggcctg gcttgggtcc ctctggcctt tccccagggg 780

ccctctttcc ttggggcttt cttgggccgc cactgctccc gctcctctcc ccccatccca 840

ccccctcacc ccctcgttct tcatatcctt ctctagtgct ccctccactt tcatccaccc 900

ttctgcaaga gtgtgggacc acaaatgagt tttcacctgg cctggggaca cacgtgcccc 960

cacaggtgct gagtgacttt ctaggacagt aatctgcttt aggctaaaat gggacttgat 1020

cttctgttag ccctaatcat caattagcag agccggtgaa ggtgcagaac ctaccgcctt 1080

tccaggcctc ctcccacctc tgccacctcc actctccttc ctgggatgtg ggggctggca 1140

cacgtgtggc ccagggcatt ggtgggattg cactgagctg ggtcattagc gtaatcctgg 1200

acaagggcag acagggcgag cggagggcca gctccggggc tcaggcaagg ctgggggctt 1260

cccccagaca ccccactcct cctctgctgg acccccactt catagggcac ttcgtgttct 1320

caaagggctt ccaaatagca tggtggcctt ggatgcccag ggaagcctca gagttgctta 1380

tctccctcta gacagaaggg gaatctcggt caagagggag aggtcgccct gttcaaggcc 1440

acccagccag ctcatggcgg taatgggaca aggctggcca gccatcccac cctcagaagg 1500

gacccggtgg ggcaggtgat ctcagaggag gctcacttct gggtctcaca ttctt 1555

<210> SEQ ID NO: 5

<211> LENGTH: 189

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Modified SV40 intron

<400> SEQENCE: 5

gatccggtac tcgaggaact gaaaaaccag aaagttaact ggtaagttta gtctttttgt 60

cttttatttc aggtcccgga tccggtggtg gtgcaaatca aagaactgct cctcagtgga 120

tgttgccttt acttctaggc ctgtacggaa gtgttacttc tgctctaaaa gctgcggaat 180

tgtacccgc 189

<210> SEQ ID NO: 6

<211> LENGTH: 1114

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 6

atgagaaaaa tgtcggagga agagttttat ctgttcaaaa atatctcttc agtggggccg 60

tgggatgggc ctcagtacca cattgcccct gtctgggcct tctacctcca ggcagctttc 120

atgggcactg tcttccttat agggttccca ctcaatgcca tggtgctggt ggccacactg 180

cgctacaaaa agttgcggca gcccctcaac tacattctgg tcaacgtgtc cttcggaggc 240

ttcctcctct gcatcttctc tgtcttccct gtcttcgtcg ccagctgtaa cggatacttc 300

gtcttcggtc gccatgtttg tgctttggag ggcttcctgg gcactgtagc aggtctggtt 360

acaggatggt cactggcctt cctggccttt gagcgctaca ttgtcatctg taagcccttc 420

ggcaacttcc gcttcagctc caagcatgca ctgacggtgg tcctggctac ctggaccatt 480

ggtattggcg tctccatccc acccttcttt ggctggagcc ggttcatccc tgagggcctg 540

cagtgttcct gtggccctga ctggtacacc gtgggcacca aataccgcag cgagtcctat 600

acgtggttcc tcttcatctt ctgcttcatt gtgcctctct ccctcatctg cttctcctac 660

actcagctgc tgagggccct gaaagctgtt gcagctcagc agcaggagtc agctacgacc 720

cagaaggctg aacgggaggt gagccgcatg gtggttgtga tggtaggatc cttctgtgtc 780

tgctacgtgc cctacgcggc cttcgccatg tacatggtca acaaccgtaa ccatgggctg 840

gacttacggc ttgtcaccat tccttcattc ttctccaaga gtgcttgcat ctacaatccc 900

atcatctact gcttcatgaa taagcagttc caagcttgca tcatgaagat ggtgtgtggg 960

aaggccatga cagatgaatc cgacacatgc agctcccaga aaacagaagt ttctactgtc 1020

tcgtctaccc aagttggccc caactgagga cccaatattg gcctgtttgc aacagctaga 1080

attaaatttt acttttaaaa aaaaaaaaaa aaaa 1114

<210> SEQ ID NO: 7

<211> LENGTH: 348

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 7

Met Arg Lys Met Ser Glu Glu Glu Phe Tyr Leu Phe Lys Asn Ile Ser

1 5 10 15

Ser Val Gly Pro Trp Asp Gly Pro Gln Tyr His Ile Ala Pro Val Trp

20 25 30

Ala Phe Tyr Leu Gln Ala Ala Phe Met Gly Thr Val Phe Leu Ile Gly

35 40 45

Phe Pro Leu Asn Ala Met Val Leu Val Ala Thr Leu Arg Tyr Lys Lys

50 55 60

Leu Arg Gln Pro Leu Asn Tyr Ile Leu Val Asn Val Ser Phe Gly Gly

65 70 75 80

Phe Leu Leu Cys Ile Phe Ser Val Phe Pro Val Phe Val Ala Ser Cys

85 90 95

Asn Gly Tyr Phe Val Phe Gly Arg His Val Cys Ala Leu Glu Gly Phe

100 105 110

Leu Gly Thr Val Ala Gly Leu Val Thr Gly Trp Ser Leu Ala Phe Leu

115 120 125

Ala Phe Glu Arg Tyr Ile Val Ile Cys Lys Pro Phe Gly Asn Phe Arg

130 135 140

Phe Ser Ser Lys His Ala Leu Thr Val Val Leu Ala Thr Trp Thr Ile

145 150 155 160

Gly Ile Gly Val Ser Ile Pro Pro Phe Phe Gly Trp Ser Arg Phe Ile

165 170 175

Pro Glu Gly Leu Gln Cys Ser Cys Gly Pro Asp Trp Tyr Thr Val Gly

180 185 190

Thr Lys Tyr Arg Ser Glu Ser Tyr Thr Trp Phe Leu Phe Ile Phe Cys

195 200 205

Phe Ile Val Pro Leu Ser Leu Ile Cys Phe Ser Tyr Thr Gln Leu Leu

210 215 220

Arg Ala Leu Lys Ala Val Ala Ala Gln Gln Gln Glu Ser Ala Thr Thr

225 230 235 240

Gln Lys Ala Glu Arg Glu Val Ser Arg Met Val Val Val Met Val Gly

245 250 255

Ser Phe Cys Val Cys Tyr Val Pro Tyr Ala Ala Phe Ala Met Tyr Met

260 265 270

Val Asn Asn Arg Asn His Gly Leu Asp Leu Arg Leu Val Thr Ile Pro

275 280 285

Ser Phe Phe Ser Lys Ser Ala Cys Ile Tyr Asn Pro Ile Ile Tyr Cys

290 295 300

Phe Met Asn Lys Gln Phe Gln Ala Cys Ile Met Lys Met Val Cys Gly

305 310 315 320

Lys Ala Met Thr Asp Glu Ser Asp Thr Cys Ser Ser Gln Lys Thr Glu

325 330 335

Val Ser Thr Val Ser Ser Thr Gln Val Gly Pro Asn

340 345

<210> SEQ ID NO: 8

<211> LENGTH: 1998

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 8

cccactggcc ggtataaagc accgtgaccc tcaggtgacg caccagggcc ggctgccgtc 60

ggggacaggg ctttccatag ccatggccca gcagtggagc ctccaaaggc tcgcaggccg 120

ccatccgcag gacagctatg aggacagcac ccagtccagc atcttcacct acaccaacag 180

caactccacc agaggcccct tcgaaggccc gaattaccac atcgctccca gatgggtgta 240

ccacctcacc agtgtctgga tgatctttgt ggtcattgca tccgtcttca caaatgggct 300

tgtgctggcg gccaccatga agttcaagaa gctgcgccac ccgctgaact ggatcctggt 360

gaacctggcg gtcgctgacc tggcagagac cgtcatcgcc agcactatca gcgttgtgaa 420

ccaggtctat ggctacttcg tgctgggcca ccctatgtgt gtcctggagg gctacaccgt 480

ctccctgtgt gggatcacag gtctctggtc tctggccatc atttcctggg agagatggat 540

ggtggtctgc aagccctttg gcaatgtgag atttgatgcc aagctggcca tcgtgggcat 600

tgccttctcc tggatctggg ctgctgtgtg gacagccccg cccatctttg gttggagcag 660

gtactggccc cacggcctga agacttcatg cggcccagac gtgttcagcg gcagctcgta 720

ccccggggtg cagtcttaca tgattgtcct catggtcacc tgctgcatca ccccactcag 780

catcatcgtg ctctgctacc tccaagtgtg gctggccatc cgagcggtgg caaagcagca 840

gaaagagtct gaatccaccc agaaggcaga gaaggaagtg acgcgcatgg tggtggtgat 900

ggtcctggca ttctgcttct gctggggacc atacgccttc ttcgcatgct ttgctgctgc 960

caaccctggc taccccttcc accctttgat ggctgccctg ccggccttct ttgccaaaag 1020

tgccactatc tacaaccccg ttatctatgt ctttatgaac cggcagtttc gaaactgcat 1080

cttgcagctt ttcgggaaga aggttgacga tggctctgaa ctctccagcg cctccaaaac 1140

ggaggtctca tctgtgtcct cggtatcgcc tgcatgaggt ctgcctccta cccatcccgc 1200

ccaccggggc tttggccacc tctcctttcc ccctccttct ccatccctgt aaaataaatg 1260

taatttatct ttgccaaaac caacaaagtc acagaggctt tcactgcagt gtgggaccac 1320

ctgagcctct gcgtgtgcag gcactgggtc tcgagagggt gcaaggggga taaagaggag 1380

agagcgcttc atagacttta agttttcccg agcctcatgt ctaccgatgg cgtgaaagga 1440

tcctggcaaa acagaagtgt gaggcaggtg ggcgtctata tccatttcac caggctggtg 1500

gttacataat cggcaagcaa gagctgtgga ggggcttgct ggatgccctc agcacccagg 1560

aggagggagg gagctagcaa gctaaggcag gtggccctcc tggcccctta aggtccatct 1620

gctggaggcc cagagtcctt ggagtacagt ctacacctgg aggggaccca ttcctgccag 1680

tctgtggcag ggatggcgcg ccacctctgc caggccagga ccccaagccc gatcagcatc 1740

agcatggtgc aggtgcacag gcgtgagctg atcagtgacg aggggcaggc acacaaggtg 1800

gagacaaaga ccaagaggac ggttgccagt gagaggcgcg gactcaggaa cttgaacaac 1860

atctgcgggg gacggctttg gaggtgctcc gctgcctcca gttgggtgac ttgctgtagc 1920

atctccagct tggatattcg gctcttgaag gtctccgtga tctcctgcag gagacgaaaa 1980

tgcacgcacc agaagtca 1998

<210> SEQ ID NO: 9

<211> LENGTH: 364

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 9

Met Ala Gln Gln Trp Ser Leu Gln Arg Leu Ala Gly Arg His Pro Gln

1 5 10 15

Asp Ser Tyr Glu Asp Ser Thr Gln Ser Ser Ile Phe Thr Tyr Thr Asn

20 25 30

Ser Asn Ser Thr Arg Gly Pro Phe Glu Gly Pro Asn Tyr His Ile Ala

35 40 45

Pro Arg Trp Val Tyr His Leu Thr Ser Val Trp Met Ile Phe Val Val

50 55 60

Ile Ala Ser Val Phe Thr Asn Gly Leu Val Leu Ala Ala Thr Met Lys

65 70 75 80

Phe Lys Lys Leu Arg His Pro Leu Asn Trp Ile Leu Val Asn Leu Ala

85 90 95

Val Ala Asp Leu Ala Glu Thr Val Ile Ala Ser Thr Ile Ser Val Val

100 105 110

Asn Gln Val Tyr Gly Tyr Phe Val Leu Gly His Pro Met Cys Val Leu

115 120 125

Glu Gly Tyr Thr Val Ser Leu Cys Gly Ile Thr Gly Leu Trp Ser Leu

130 135 140

Ala Ile Ile Ser Trp Glu Arg Trp Met Val Val Cys Lys Pro Phe Gly

145 150 155 160

Asn Val Arg Phe Asp Ala Lys Leu Ala Ile Val Gly Ile Ala Phe Ser

165 170 175

Trp Ile Trp Ala Ala Val Trp Thr Ala Pro Pro Ile Phe Gly Trp Ser

180 185 190

Arg Tyr Trp Pro His Gly Leu Lys Thr Ser Cys Gly Pro Asp Val Phe

195 200 205

Ser Gly Ser Ser Tyr Pro Gly Val Gln Ser Tyr Met Ile Val Leu Met

210 215 220

Val Thr Cys Cys Ile Thr Pro Leu Ser Ile Ile Val Leu Cys Tyr Leu

225 230 235 240

Gln Val Trp Leu Ala Ile Arg Ala Val Ala Lys Gln Gln Lys Glu Ser

245 250 255

Glu Ser Thr Gln Lys Ala Glu Lys Glu Val Thr Arg Met Val Val Val

260 265 270

Met Val Leu Ala Phe Cys Phe Cys Trp Gly Pro Tyr Ala Phe Phe Ala

275 280 285

Cys Phe Ala Ala Ala Asn Pro Gly Tyr Pro Phe His Pro Leu Met Ala

290 295 300

Ala Leu Pro Ala Phe Phe Ala Lys Ser Ala Thr Ile Tyr Asn Pro Val

305 310 315 320

Ile Tyr Val Phe Met Asn Arg Gln Phe Arg Asn Cys Ile Leu Gln Leu

325 330 335

Phe Gly Lys Lys Val Asp Asp Gly Ser Glu Leu Ser Ser Ala Ser Lys

340 345 350

Thr Glu Val Ser Ser Val Ser Ser Val Ser Pro Ala

355 360

<210> SEQ ID NO: 10

<211> LENGTH: 1234

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 10

cggctgccgt cggggacagg gctttccata gccatggccc agcagtggag cctccaaagg 60

ctcgcaggcc gccatccgca ggacagctat gaggacagca cccagtccag catcttcacc 120

tacaccaaca gcaactccac cagaggcccc ttcgaaggcc cgaattacca catcgctccc 180

agatgggtgt accacctcac cagtgtctgg atgatctttg tggtcactgc atccgtcttc 240

acaaatgggc ttgtgctggc ggccaccatg aagttcaaga agctgcgcca cccgctgaac 300

tggatcctgg tgaacctggc ggtcgctgac ctagcagaga ccgtcatcgc cagcactatc 360

agcattgtga accaggtctc tggctacttc gtgctgggcc accctatgtg tgtcctggag 420

ggctacaccg tctccctgtg tgggatcaca ggtctctggt ctctggccat catttcctgg 480

gagaggtggc tggtggtgtg caagcccttt ggcaatgtga gatttgatgc caagctggcc 540

atcgtgggca ttgccttctc ctggatctgg tctgctgtgt ggacagcccc gcccatcttt 600

ggttggagca ggtactggcc ccacggcctg aagacttcat gcggcccaga cgtgttcagc 660

ggcagctcgt accccggggt gcagtcttac atgattgtcc tcatggtcac ctgctgcatc 720

atcccactcg ctatcatcat gctctgctac ctccaagtgt ggctggccat ccgagcggtg 780

gcaaagcagc agaaagagtc tgaatccacc cagaaggcag agaaggaagt gacgcgcatg 840

gtggtggtga tgatctttgc gtactgcgtc tgctggggac cctacacctt cttcgcatgc 900

tttgctgctg ccaaccctgg ttacgccttc caccctttga tggctgccct gccggcctac 960

tttgccaaaa gtgccactat ctacaacccc gttatctatg tctttatgaa ccggcagttt 1020

cgaaactgca tcttgcagct tttcgggaag aaggttgacg atggctctga actctccagc 1080

gcctccaaaa cggaggtctc atctgtgtcc tcggtatcgc ctgcatgagg tctgcctcct 1140

acccatcccg cccaccgggg ctttggccac ctctcctttc cccctccttc tccatccctg 1200

taaaataaat gtaatttatc tttgccaaaa ccaa 1234

<210> SEQ ID NO: 11

<211> LENGTH: 364

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 11

Met Ala Gln Gln Trp Ser Leu Gln Arg Leu Ala Gly Arg His Pro Gln

1 5 10 15

Asp Ser Tyr Glu Asp Ser Thr Gln Ser Ser Ile Phe Thr Tyr Thr Asn

20 25 30

Ser Asn Ser Thr Arg Gly Pro Phe Glu Gly Pro Asn Tyr His Ile Ala

35 40 45

Pro Arg Trp Val Tyr His Leu Thr Ser Val Trp Met Ile Phe Val Val

50 55 60

Thr Ala Ser Val Phe Thr Asn Gly Leu Val Leu Ala Ala Thr Met Lys

65 70 75 80

Phe Lys Lys Leu Arg His Pro Leu Asn Trp Ile Leu Val Asn Leu Ala

85 90 95

Val Ala Asp Leu Ala Glu Thr Val Ile Ala Ser Thr Ile Ser Ile Val

100 105 110

Asn Gln Val Ser Gly Tyr Phe Val Leu Gly His Pro Met Cys Val Leu

115 120 125

Glu Gly Tyr Thr Val Ser Leu Cys Gly Ile Thr Gly Leu Trp Ser Leu

130 135 140

Ala Ile Ile Ser Trp Glu Arg Trp Leu Val Val Cys Lys Pro Phe Gly

145 150 155 160

Asn Val Arg Phe Asp Ala Lys Leu Ala Ile Val Gly Ile Ala Phe Ser

165 170 175

Trp Ile Trp Ser Ala Val Trp Thr Ala Pro Pro Ile Phe Gly Trp Ser

180 185 190

Arg Tyr Trp Pro His Gly Leu Lys Thr Ser Cys Gly Pro Asp Val Phe

195 200 205

Ser Gly Ser Ser Tyr Pro Gly Val Gln Ser Tyr Met Ile Val Leu Met

210 215 220

Val Thr Cys Cys Ile Ile Pro Leu Ala Ile Ile Met Leu Cys Tyr Leu

225 230 235 240

Gln Val Trp Leu Ala Ile Arg Ala Val Ala Lys Gln Gln Lys Glu Ser

245 250 255

Glu Ser Thr Gln Lys Ala Glu Lys Glu Val Thr Arg Met Val Val Val

260 265 270

Met Ile Phe Ala Tyr Cys Val Cys Trp Gly Pro Tyr Thr Phe Phe Ala

275 280 285

Cys Phe Ala Ala Ala Asn Pro Gly Tyr Ala Phe His Pro Leu Met Ala

290 295 300

Ala Leu Pro Ala Tyr Phe Ala Lys Ser Ala Thr Ile Tyr Asn Pro Val

305 310 315 320

Ile Tyr Val Phe Met Asn Arg Gln Phe Arg Asn Cys Ile Leu Gln Leu

325 330 335

Phe Gly Lys Lys Val Asp Asp Gly Ser Glu Leu Ser Ser Ala Ser Lys

340 345 350

Thr Glu Val Ser Ser Val Ser Ser Val Ser Pro Ala

355 360

<210> SEQ ID NO: 12

<211> LENGTH: 7326

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 12

aggacacagc gtccggagcc agaggcgctc ttaacggcgt ttatgtcctt tgctgtctga 60

ggggcctcag ctctgaccaa tctggtcttc gtgtggtcat tagcatgggc ttcgtgagac 120

agatacagct tttgctctgg aagaactgga ccctgcggaa aaggcaaaag attcgctttg 180

tggtggaact cgtgtggcct ttatctttat ttctggtctt gatctggtta aggaatgcca 240

acccgctcta cagccatcat gaatgccatt tccccaacaa ggcgatgccc tcagcaggaa 300

tgctgccgtg gctccagggg atcttctgca atgtgaacaa tccctgtttt caaagcccca 360

ccccaggaga atctcctgga attgtgtcaa actataacaa ctccatcttg gcaagggtat 420

atcgagattt tcaagaactc ctcatgaatg caccagagag ccagcacctt ggccgtattt 480

ggacagagct acacatcttg tcccaattca tggacaccct ccggactcac ccggagagaa 540

ttgcaggaag aggaatacga ataagggata tcttgaaaga tgaagaaaca ctgacactat 600

ttctcattaa aaacatcggc ctgtctgact cagtggtcta ccttctgatc aactctcaag 660

tccgtccaga gcagttcgct catggagtcc cggacctggc gctgaaggac atcgcctgca 720

gcgaggccct cctggagcgc ttcatcatct tcagccagag acgcggggca aagacggtgc 780

gctatgccct gtgctccctc tcccagggca ccctacagtg gatagaagac actctgtatg 840

ccaacgtgga cttcttcaag ctcttccgtg tgcttcccac actcctagac agccgttctc 900

aaggtatcaa tctgagatct tggggaggaa tattatctga tatgtcacca agaattcaag 960

agtttatcca tcggccgagt atgcaggact tgctgtgggt gaccaggccc ctcatgcaga 1020

atggtggtcc agagaccttt acaaagctga tgggcatcct gtctgacctc ctgtgtggct 1080

accccgaggg aggtggctct cgggtgctct ccttcaactg gtatgaagac aataactata 1140

aggcctttct ggggattgac tccacaagga aggatcctat ctattcttat gacagaagaa 1200

caacatcctt ttgtaatgca ttgatccaga gcctggagtc aaatccttta accaaaatcg 1260

cttggagggc ggcaaagcct ttgctgatgg gaaaaatcct gtacactcct gattcacctg 1320

cagcacgaag gatactgaag aatgccaact caacttttga agaactggaa cacgttagga 1380

agttggtcaa agcctgggaa gaagtagggc cccagatctg gtacttcttt gacaacagca 1440

cacagatgaa catgatcaga gataccctgg ggaacccaac agtaaaagac tttttgaata 1500

ggcagcttgg tgaagaaggt attactgctg aagccatcct aaacttcctc tacaagggcc 1560

ctcgggaaag ccaggctgac gacatggcca acttcgactg gagggacata tttaacatca 1620

ctgatcgcac cctccgcctg gtcaatcaat acctggagtg cttggtcctg gataagtttg 1680

aaagctacaa tgatgaaact cagctcaccc aacgtgccct ctctctactg gaggaaaaca 1740

tgttctgggc cggagtggta ttccctgaca tgtatccctg gaccagctct ctaccacccc 1800

acgtgaagta taagatccga atggacatag acgtggtgga gaaaaccaat aagattaaag 1860

acaggtattg ggattctggt cccagagctg atcccgtgga agatttccgg tacatctggg 1920

gcgggtttgc ctatctgcag gacatggttg aacaggggat cacaaggagc caggtgcagg 1980

cggaggctcc agttggaatc tacctccagc agatgcccta cccctgcttc gtggacgatt 2040

ctttcatgat catcctgaac cgctgtttcc ctatcttcat ggtgctggca tggatctact 2100

ctgtctccat gactgtgaag agcatcgtct tggagaagga gttgcgactg aaggagacct 2160

tgaaaaatca gggtgtctcc aatgcagtga tttggtgtac ctggttcctg gacagcttct 2220

ccatcatgtc gatgagcatc ttcctcctga cgatattcat catgcatgga agaatcctac 2280

attacagcga cccattcatc ctcttcctgt tcttgttggc tttctccact gccaccatca 2340

tgctgtgctt tctgctcagc accttcttct ccaaggccag tctggcagca gcctgtagtg 2400

gtgtcatcta tttcaccctc tacctgccac acatcctgtg cttcgcctgg caggaccgca 2460

tgaccgctga gctgaagaag gctgtgagct tactgtctcc ggtggcattt ggatttggca 2520

ctgagtacct ggttcgcttt gaagagcaag gcctggggct gcagtggagc aacatcggga 2580

acagtcccac ggaaggggac gaattcagct tcctgctgtc catgcagatg atgctccttg 2640

atgctgctgt ctatggctta ctcgcttggt accttgatca ggtgtttcca ggagactatg 2700

gaaccccact tccttggtac tttcttctac aagagtcgta ttggcttggc ggtgaagggt 2760

gttcaaccag agaagaaaga gccctggaaa agaccgagcc cctaacagag gaaacggagg 2820

atccagagca cccagaagga atacacgact ccttctttga acgtgagcat ccagggtggg 2880

ttcctggggt atgcgtgaag aatctggtaa agatttttga gccctgtggc cggccagctg 2940

tggaccgtct gaacatcacc ttctacgaga accagatcac cgcattcctg ggccacaatg 3000

gagctgggaa aaccaccacc ttgtccatcc tgacgggtct gttgccacca acctctggga 3060

ctgtgctcgt tgggggaagg gacattgaaa ccagcctgga tgcagtccgg cagagccttg 3120

gcatgtgtcc acagcacaac atcctgttcc accacctcac ggtggctgag cacatgctgt 3180

tctatgccca gctgaaagga aagtcccagg aggaggccca gctggagatg gaagccatgt 3240

tggaggacac aggcctccac cacaagcgga atgaagaggc tcaggaccta tcaggtggca 3300

tgcagagaaa gctgtcggtt gccattgcct ttgtgggaga tgccaaggtg gtgattctgg 3360

acgaacccac ctctggggtg gacccttact cgagacgctc aatctgggat ctgctcctga 3420

agtatcgctc aggcagaacc atcatcatgt ccactcacca catggacgag gccgacctcc 3480

ttggggaccg cattgccatc attgcccagg gaaggctcta ctgctcaggc accccactct 3540

tcctgaagaa ctgctttggc acaggcttgt acttaacctt ggtgcgcaag atgaaaaaca 3600

tccagagcca aaggaaaggc agtgagggga cctgcagctg ctcgtctaag ggtttctcca 3660

ccacgtgtcc agcccacgtc gatgacctaa ctccagaaca agtcctggat ggggatgtaa 3720

atgagctgat ggatgtagtt ctccaccatg ttccagaggc aaagctggtg gagtgcattg 3780

gtcaagaact tatcttcctt cttccaaata agaacttcaa gcacagagca tatgccagcc 3840

ttttcagaga gctggaggag acgctggctg accttggtct cagcagtttt ggaatttctg 3900

acactcccct ggaagagatt tttctgaagg tcacggagga ttctgattca ggacctctgt 3960

ttgcgggtgg cgctcagcag aaaagagaaa acgtcaaccc ccgacacccc tgcttgggtc 4020

ccagagagaa ggctggacag acaccccagg actccaatgt ctgctcccca ggggcgccgg 4080

ctgctcaccc agagggccag cctcccccag agccagagtg cccaggcccg cagctcaaca 4140

cggggacaca gctggtcctc cagcatgtgc aggcgctgct ggtcaagaga ttccaacaca 4200

ccatccgcag ccacaaggac ttcctggcgc agatcgtgct cccggctacc tttgtgtttt 4260

tggctctgat gctttctatt gttatccctc cttttggcga ataccccgct ttgacccttc 4320

acccctggat atatgggcag cagtacacct tcttcagcat ggatgaacca ggcagtgagc 4380

agttcacggt acttgcagac gtcctcctga ataagccagg ctttggcaac cgctgcctga 4440

aggaagggtg gcttccggag tacccctgtg gcaactcaac accctggaag actccttctg 4500

tgtccccaaa catcacccag ctgttccaga agcagaaatg gacacaggtc aacccttcac 4560

catcctgcag gtgcagcacc agggagaagc tcaccatgct gccagagtgc cccgagggtg 4620

ccgggggcct cccgcccccc cagagaacac agcgcagcac ggaaattcta caagacctga 4680

cggacaggaa catctccgac ttcttggtaa aaacgtatcc tgctcttata agaagcagct 4740

taaagagcaa attctgggtc aatgaacaga ggtatggagg aatttccatt ggaggaaagc 4800

tcccagtcgt ccccatcacg ggggaagcac ttgttgggtt tttaagcgac cttggccgga 4860

tcatgaatgt gagcgggggc cctatcacta gagaggcctc taaagaaata cctgatttcc 4920

ttaaacatct agaaactgaa gacaacatta aggtgtggtt taataacaaa ggctggcatg 4980

ccctggtcag ctttctcaat gtggcccaca acgccatctt acgggccagc ctgcctaagg 5040

acaggagccc cgaggagtat ggaatcaccg tcattagcca acccctgaac ctgaccaagg 5100

agcagctctc agagattaca gtgctgacca cttcagtgga tgctgtggtt gccatctgcg 5160

tgattttctc catgtccttc gtcccagcca gctttgtcct ttatttgatc caggagcggg 5220

tgaacaaatc caagcacctc cagtttatca gtggagtgag ccccaccacc tactgggtga 5280

ccaacttcct ctgggacatc atgaattatt ccgtgagtgc tgggctggtg gtgggcatct 5340

tcatcgggtt tcagaagaaa gcctacactt ctccagaaaa ccttcctgcc cttgtggcac 5400

tgctcctgct gtatggatgg gcggtcattc ccatgatgta cccagcatcc ttcctgtttg 5460

atgtccccag cacagcctat gtggctttat cttgtgctaa tctgttcatc ggcatcaaca 5520

gcagtgctat taccttcatc ttggaattat ttgagaataa ccggacgctg ctcaggttca 5580

acgccgtgct gaggaagctg ctcattgtct tcccccactt ctgcctgggc cggggcctca 5640

ttgaccttgc actgagccag gctgtgacag atgtctatgc ccggtttggt gaggagcact 5700

ctgcaaatcc gttccactgg gacctgattg ggaagaacct gtttgccatg gtggtggaag 5760

gggtggtgta cttcctcctg accctgctgg tccagcgcca cttcttcctc tcccaatgga 5820

ttgccgagcc cactaaggag cccattgttg atgaagatga tgatgtggct gaagaaagac 5880

aaagaattat tactggtgga aataaaactg acatcttaag gctacatgaa ctaaccaaga 5940

tttatccagg cacctccagc ccagcagtgg acaggctgtg tgtcggagtt cgccctggag 6000

agtgctttgg cctcctggga gtgaatggtg ccggcaaaac aaccacattc aagatgctca 6060

ctggggacac cacagtgacc tcaggggatg ccaccgtagc aggcaagagt attttaacca 6120

atatttctga agtccatcaa aatatgggct actgtcctca gtttgatgca attgatgagc 6180

tgctcacagg acgagaacat ctttaccttt atgcccggct tcgaggtgta ccagcagaag 6240

aaatcgaaaa ggttgcaaac tggagtatta agagcctggg cctgactgtc tacgccgact 6300

gcctggctgg cacgtacagt gggggcaaca agcggaaact ctccacagcc atcgcactca 6360

ttggctgccc accgctggtg ctgctggatg agcccaccac agggatggac ccccaggcac 6420

gccgcatgct gtggaacgtc atcgtgagca tcatcagaga agggagggct gtggtcctca 6480

catcccacag catggaagaa tgtgaggcac tgtgtacccg gctggccatc atggtaaagg 6540

gcgcctttcg atgtatgggc accattcagc atctcaagtc caaatttgga gatggctata 6600

tcgtcacaat gaagatcaaa tccccgaagg acgacctgct tcctgacctg aaccctgtgg 6660

agcagttctt ccaggggaac ttcccaggca gtgtgcagag ggagaggcac tacaacatgc 6720

tccagttcca ggtctcctcc tcctccctgg cgaggatctt ccagctcctc ctctcccaca 6780

aggacagcct gctcatcgag gagtactcag tcacacagac cacactggac caggtgtttg 6840

taaattttgc taaacagcag actgaaagtc atgacctccc tctgcaccct cgagctgctg 6900

gagccagtcg acaagcccag gactgatctt tcacaccgct cgttcctgca gccagaaagg 6960

aactctgggc agctggaggc gcaggagcct gtgcccatat ggtcatccaa atggactggc 7020

cagcgtaaat gaccccactg cagcagaaaa caaacacacg aggagcatgc agcgaattca 7080

gaaagaggtc tttcagaagg aaaccgaaac tgacttgctc acctggaaca cctgatggtg 7140

aaaccaaaca aatacaaaat ccttctccag accccagaac tagaaacccc gggccatccc 7200

actagcagct ttggcctcca tattgctctc atttcaagca gatctgcttt tctgcatgtt 7260

tgtctgtgtg tctgcgttgt gtgtgatttt catggaaaaa taaaatgcaa atgcactcat 7320

cacaaa 7326

<210> SEQ ID NO: 13

<211> LENGTH: 2273

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 13

Met Gly Phe Val Arg Gln Ile Gln Leu Leu Leu Trp Lys Asn Trp Thr

1 5 10 15

Leu Arg Lys Arg Gln Lys Ile Arg Phe Val Val Glu Leu Val Trp Pro

20 25 30

Leu Ser Leu Phe Leu Val Leu Ile Trp Leu Arg Asn Ala Asn Pro Leu

35 40 45

Tyr Ser His His Glu Cys His Phe Pro Asn Lys Ala Met Pro Ser Ala

50 55 60

Gly Met Leu Pro Trp Leu Gln Gly Ile Phe Cys Asn Val Asn Asn Pro

65 70 75 80

Cys Phe Gln Ser Pro Thr Pro Gly Glu Ser Pro Gly Ile Val Ser Asn

85 90 95

Tyr Asn Asn Ser Ile Leu Ala Arg Val Tyr Arg Asp Phe Gln Glu Leu

100 105 110

Leu Met Asn Ala Pro Glu Ser Gln His Leu Gly Arg Ile Trp Thr Glu

115 120 125

Leu His Ile Leu Ser Gln Phe Met Asp Thr Leu Arg Thr His Pro Glu

130 135 140

Arg Ile Ala Gly Arg Gly Ile Arg Ile Arg Asp Ile Leu Lys Asp Glu

145 150 155 160

Glu Thr Leu Thr Leu Phe Leu Ile Lys Asn Ile Gly Leu Ser Asp Ser

165 170 175

Val Val Tyr Leu Leu Ile Asn Ser Gln Val Arg Pro Glu Gln Phe Ala

180 185 190

His Gly Val Pro Asp Leu Ala Leu Lys Asp Ile Ala Cys Ser Glu Ala

195 200 205

Leu Leu Glu Arg Phe Ile Ile Phe Ser Gln Arg Arg Gly Ala Lys Thr

210 215 220

Val Arg Tyr Ala Leu Cys Ser Leu Ser Gln Gly Thr Leu Gln Trp Ile

225 230 235 240

Glu Asp Thr Leu Tyr Ala Asn Val Asp Phe Phe Lys Leu Phe Arg Val

245 250 255

Leu Pro Thr Leu Leu Asp Ser Arg Ser Gln Gly Ile Asn Leu Arg Ser

260 265 270

Trp Gly Gly Ile Leu Ser Asp Met Ser Pro Arg Ile Gln Glu Phe Ile

275 280 285

His Arg Pro Ser Met Gln Asp Leu Leu Trp Val Thr Arg Pro Leu Met

290 295 300

Gln Asn Gly Gly Pro Glu Thr Phe Thr Lys Leu Met Gly Ile Leu Ser

305 310 315 320

Asp Leu Leu Cys Gly Tyr Pro Glu Gly Gly Gly Ser Arg Val Leu Ser

325 330 335

Phe Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala Phe Leu Gly Ile Asp

340 345 350

Ser Thr Arg Lys Asp Pro Ile Tyr Ser Tyr Asp Arg Arg Thr Thr Ser

355 360 365

Phe Cys Asn Ala Leu Ile Gln Ser Leu Glu Ser Asn Pro Leu Thr Lys

370 375 380

Ile Ala Trp Arg Ala Ala Lys Pro Leu Leu Met Gly Lys Ile Leu Tyr

385 390 395 400

Thr Pro Asp Ser Pro Ala Ala Arg Arg Ile Leu Lys Asn Ala Asn Ser

405 410 415

Thr Phe Glu Glu Leu Glu His Val Arg Lys Leu Val Lys Ala Trp Glu

420 425 430

Glu Val Gly Pro Gln Ile Trp Tyr Phe Phe Asp Asn Ser Thr Gln Met

435 440 445

Asn Met Ile Arg Asp Thr Leu Gly Asn Pro Thr Val Lys Asp Phe Leu

450 455 460

Asn Arg Gln Leu Gly Glu Glu Gly Ile Thr Ala Glu Ala Ile Leu Asn

465 470 475 480

Phe Leu Tyr Lys Gly Pro Arg Glu Ser Gln Ala Asp Asp Met Ala Asn

485 490 495

Phe Asp Trp Arg Asp Ile Phe Asn Ile Thr Asp Arg Thr Leu Arg Leu

500 505 510

Val Asn Gln Tyr Leu Glu Cys Leu Val Leu Asp Lys Phe Glu Ser Tyr

515 520 525

Asn Asp Glu Thr Gln Leu Thr Gln Arg Ala Leu Ser Leu Leu Glu Glu

530 535 540

Asn Met Phe Trp Ala Gly Val Val Phe Pro Asp Met Tyr Pro Trp Thr

545 550 555 560

Ser Ser Leu Pro Pro His Val Lys Tyr Lys Ile Arg Met Asp Ile Asp

565 570 575

Val Val Glu Lys Thr Asn Lys Ile Lys Asp Arg Tyr Trp Asp Ser Gly

580 585 590

Pro Arg Ala Asp Pro Val Glu Asp Phe Arg Tyr Ile Trp Gly Gly Phe

595 600 605

Ala Tyr Leu Gln Asp Met Val Glu Gln Gly Ile Thr Arg Ser Gln Val

610 615 620

Gln Ala Glu Ala Pro Val Gly Ile Tyr Leu Gln Gln Met Pro Tyr Pro

625 630 635 640

Cys Phe Val Asp Asp Ser Phe Met Ile Ile Leu Asn Arg Cys Phe Pro

645 650 655

Ile Phe Met Val Leu Ala Trp Ile Tyr Ser Val Ser Met Thr Val Lys

660 665 670

Ser Ile Val Leu Glu Lys Glu Leu Arg Leu Lys Glu Thr Leu Lys Asn

675 680 685

Gln Gly Val Ser Asn Ala Val Ile Trp Cys Thr Trp Phe Leu Asp Ser

690 695 700

Phe Ser Ile Met Ser Met Ser Ile Phe Leu Leu Thr Ile Phe Ile Met

705 710 715 720

His Gly Arg Ile Leu His Tyr Ser Asp Pro Phe Ile Leu Phe Leu Phe

725 730 735

Leu Leu Ala Phe Ser Thr Ala Thr Ile Met Leu Cys Phe Leu Leu Ser

740 745 750

Thr Phe Phe Ser Lys Ala Ser Leu Ala Ala Ala Cys Ser Gly Val Ile

755 760 765

Tyr Phe Thr Leu Tyr Leu Pro His Ile Leu Cys Phe Ala Trp Gln Asp

770 775 780

Arg Met Thr Ala Glu Leu Lys Lys Ala Val Ser Leu Leu Ser Pro Val

785 790 795 800

Ala Phe Gly Phe Gly Thr Glu Tyr Leu Val Arg Phe Glu Glu Gln Gly

805 810 815

Leu Gly Leu Gln Trp Ser Asn Ile Gly Asn Ser Pro Thr Glu Gly Asp

820 825 830

Glu Phe Ser Phe Leu Leu Ser Met Gln Met Met Leu Leu Asp Ala Ala

835 840 845

Val Tyr Gly Leu Leu Ala Trp Tyr Leu Asp Gln Val Phe Pro Gly Asp

850 855 860

Tyr Gly Thr Pro Leu Pro Trp Tyr Phe Leu Leu Gln Glu Ser Tyr Trp

865 870 875 880

Leu Gly Gly Glu Gly Cys Ser Thr Arg Glu Glu Arg Ala Leu Glu Lys

885 890 895

Thr Glu Pro Leu Thr Glu Glu Thr Glu Asp Pro Glu His Pro Glu Gly

900 905 910

Ile His Asp Ser Phe Phe Glu Arg Glu His Pro Gly Trp Val Pro Gly

915 920 925

Val Cys Val Lys Asn Leu Val Lys Ile Phe Glu Pro Cys Gly Arg Pro

930 935 940

Ala Val Asp Arg Leu Asn Ile Thr Phe Tyr Glu Asn Gln Ile Thr Ala

945 950 955 960

Phe Leu Gly His Asn Gly Ala Gly Lys Thr Thr Thr Leu Ser Ile Leu

965 970 975

Thr Gly Leu Leu Pro Pro Thr Ser Gly Thr Val Leu Val Gly Gly Arg

980 985 990

Asp Ile Glu Thr Ser Leu Asp Ala Val Arg Gln Ser Leu Gly Met Cys

995 1000 1005

Pro Gln His Asn Ile Leu Phe His His Leu Thr Val Ala Glu His

1010 1015 1020

Met Leu Phe Tyr Ala Gln Leu Lys Gly Lys Ser Gln Glu Glu Ala

1025 1030 1035

Gln Leu Glu Met Glu Ala Met Leu Glu Asp Thr Gly Leu His His

1040 1045 1050

Lys Arg Asn Glu Glu Ala Gln Asp Leu Ser Gly Gly Met Gln Arg

1055 1060 1065

Lys Leu Ser Val Ala Ile Ala Phe Val Gly Asp Ala Lys Val Val

1070 1075 1080

Ile Leu Asp Glu Pro Thr Ser Gly Val Asp Pro Tyr Ser Arg Arg

1085 1090 1095

Ser Ile Trp Asp Leu Leu Leu Lys Tyr Arg Ser Gly Arg Thr Ile

1100 1105 1110

Ile Met Ser Thr His His Met Asp Glu Ala Asp Leu Leu Gly Asp

1115 1120 1125

Arg Ile Ala Ile Ile Ala Gln Gly Arg Leu Tyr Cys Ser Gly Thr

1130 1135 1140

Pro Leu Phe Leu Lys Asn Cys Phe Gly Thr Gly Leu Tyr Leu Thr

1145 1150 1155

Leu Val Arg Lys Met Lys Asn Ile Gln Ser Gln Arg Lys Gly Ser

1160 1165 1170

Glu Gly Thr Cys Ser Cys Ser Ser Lys Gly Phe Ser Thr Thr Cys

1175 1180 1185

Pro Ala His Val Asp Asp Leu Thr Pro Glu Gln Val Leu Asp Gly

1190 1195 1200

Asp Val Asn Glu Leu Met Asp Val Val Leu His His Val Pro Glu

1205 1210 1215

Ala Lys Leu Val Glu Cys Ile Gly Gln Glu Leu Ile Phe Leu Leu

1220 1225 1230

Pro Asn Lys Asn Phe Lys His Arg Ala Tyr Ala Ser Leu Phe Arg

1235 1240 1245

Glu Leu Glu Glu Thr Leu Ala Asp Leu Gly Leu Ser Ser Phe Gly

1250 1255 1260

Ile Ser Asp Thr Pro Leu Glu Glu Ile Phe Leu Lys Val Thr Glu

1265 1270 1275

Asp Ser Asp Ser Gly Pro Leu Phe Ala Gly Gly Ala Gln Gln Lys

1280 1285 1290

Arg Glu Asn Val Asn Pro Arg His Pro Cys Leu Gly Pro Arg Glu

1295 1300 1305

Lys Ala Gly Gln Thr Pro Gln Asp Ser Asn Val Cys Ser Pro Gly

1310 1315 1320

Ala Pro Ala Ala His Pro Glu Gly Gln Pro Pro Pro Glu Pro Glu

1325 1330 1335

Cys Pro Gly Pro Gln Leu Asn Thr Gly Thr Gln Leu Val Leu Gln

1340 1345 1350

His Val Gln Ala Leu Leu Val Lys Arg Phe Gln His Thr Ile Arg

1355 1360 1365

Ser His Lys Asp Phe Leu Ala Gln Ile Val Leu Pro Ala Thr Phe

1370 1375 1380

Val Phe Leu Ala Leu Met Leu Ser Ile Val Ile Pro Pro Phe Gly

1385 1390 1395

Glu Tyr Pro Ala Leu Thr Leu His Pro Trp Ile Tyr Gly Gln Gln

1400 1405 1410

Tyr Thr Phe Phe Ser Met Asp Glu Pro Gly Ser Glu Gln Phe Thr

1415 1420 1425

Val Leu Ala Asp Val Leu Leu Asn Lys Pro Gly Phe Gly Asn Arg

1430 1435 1440

Cys Leu Lys Glu Gly Trp Leu Pro Glu Tyr Pro Cys Gly Asn Ser

1445 1450 1455

Thr Pro Trp Lys Thr Pro Ser Val Ser Pro Asn Ile Thr Gln Leu

1460 1465 1470

Phe Gln Lys Gln Lys Trp Thr Gln Val Asn Pro Ser Pro Ser Cys

1475 1480 1485

Arg Cys Ser Thr Arg Glu Lys Leu Thr Met Leu Pro Glu Cys Pro

1490 1495 1500

Glu Gly Ala Gly Gly Leu Pro Pro Pro Gln Arg Thr Gln Arg Ser

1505 1510 1515

Thr Glu Ile Leu Gln Asp Leu Thr Asp Arg Asn Ile Ser Asp Phe

1520 1525 1530

Leu Val Lys Thr Tyr Pro Ala Leu Ile Arg Ser Ser Leu Lys Ser

1535 1540 1545

Lys Phe Trp Val Asn Glu Gln Arg Tyr Gly Gly Ile Ser Ile Gly

1550 1555 1560

Gly Lys Leu Pro Val Val Pro Ile Thr Gly Glu Ala Leu Val Gly

1565 1570 1575

Phe Leu Ser Asp Leu Gly Arg Ile Met Asn Val Ser Gly Gly Pro

1580 1585 1590

Ile Thr Arg Glu Ala Ser Lys Glu Ile Pro Asp Phe Leu Lys His

1595 1600 1605

Leu Glu Thr Glu Asp Asn Ile Lys Val Trp Phe Asn Asn Lys Gly

1610 1615 1620

Trp His Ala Leu Val Ser Phe Leu Asn Val Ala His Asn Ala Ile

1625 1630 1635

Leu Arg Ala Ser Leu Pro Lys Asp Arg Ser Pro Glu Glu Tyr Gly

1640 1645 1650

Ile Thr Val Ile Ser Gln Pro Leu Asn Leu Thr Lys Glu Gln Leu

1655 1660 1665

Ser Glu Ile Thr Val Leu Thr Thr Ser Val Asp Ala Val Val Ala

1670 1675 1680

Ile Cys Val Ile Phe Ser Met Ser Phe Val Pro Ala Ser Phe Val

1685 1690 1695

Leu Tyr Leu Ile Gln Glu Arg Val Asn Lys Ser Lys His Leu Gln

1700 1705 1710

Phe Ile Ser Gly Val Ser Pro Thr Thr Tyr Trp Val Thr Asn Phe

1715 1720 1725

Leu Trp Asp Ile Met Asn Tyr Ser Val Ser Ala Gly Leu Val Val

1730 1735 1740

Gly Ile Phe Ile Gly Phe Gln Lys Lys Ala Tyr Thr Ser Pro Glu

1745 1750 1755

Asn Leu Pro Ala Leu Val Ala Leu Leu Leu Leu Tyr Gly Trp Ala

1760 1765 1770

Val Ile Pro Met Met Tyr Pro Ala Ser Phe Leu Phe Asp Val Pro

1775 1780 1785

Ser Thr Ala Tyr Val Ala Leu Ser Cys Ala Asn Leu Phe Ile Gly

1790 1795 1800

Ile Asn Ser Ser Ala Ile Thr Phe Ile Leu Glu Leu Phe Glu Asn

1805 1810 1815

Asn Arg Thr Leu Leu Arg Phe Asn Ala Val Leu Arg Lys Leu Leu

1820 1825 1830

Ile Val Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile Asp Leu

1835 1840 1845

Ala Leu Ser Gln Ala Val Thr Asp Val Tyr Ala Arg Phe Gly Glu

1850 1855 1860

Glu His Ser Ala Asn Pro Phe His Trp Asp Leu Ile Gly Lys Asn

1865 1870 1875

Leu Phe Ala Met Val Val Glu Gly Val Val Tyr Phe Leu Leu Thr

1880 1885 1890

Leu Leu Val Gln Arg His Phe Phe Leu Ser Gln Trp Ile Ala Glu

1895 1900 1905

Pro Thr Lys Glu Pro Ile Val Asp Glu Asp Asp Asp Val Ala Glu

1910 1915 1920

Glu Arg Gln Arg Ile Ile Thr Gly Gly Asn Lys Thr Asp Ile Leu

1925 1930 1935

Arg Leu His Glu Leu Thr Lys Ile Tyr Pro Gly Thr Ser Ser Pro

1940 1945 1950

Ala Val Asp Arg Leu Cys Val Gly Val Arg Pro Gly Glu Cys Phe

1955 1960 1965

Gly Leu Leu Gly Val Asn Gly Ala Gly Lys Thr Thr Thr Phe Lys

1970 1975 1980

Met Leu Thr Gly Asp Thr Thr Val Thr Ser Gly Asp Ala Thr Val

1985 1990 1995

Ala Gly Lys Ser Ile Leu Thr Asn Ile Ser Glu Val His Gln Asn

2000 2005 2010

Met Gly Tyr Cys Pro Gln Phe Asp Ala Ile Asp Glu Leu Leu Thr

2015 2020 2025

Gly Arg Glu His Leu Tyr Leu Tyr Ala Arg Leu Arg Gly Val Pro

2030 2035 2040

Ala Glu Glu Ile Glu Lys Val Ala Asn Trp Ser Ile Lys Ser Leu

2045 2050 2055

Gly Leu Thr Val Tyr Ala Asp Cys Leu Ala Gly Thr Tyr Ser Gly

2060 2065 2070

Gly Asn Lys Arg Lys Leu Ser Thr Ala Ile Ala Leu Ile Gly Cys

2075 2080 2085

Pro Pro Leu Val Leu Leu Asp Glu Pro Thr Thr Gly Met Asp Pro

2090 2095 2100

Gln Ala Arg Arg Met Leu Trp Asn Val Ile Val Ser Ile Ile Arg

2105 2110 2115

Glu Gly Arg Ala Val Val Leu Thr Ser His Ser Met Glu Glu Cys

2120 2125 2130

Glu Ala Leu Cys Thr Arg Leu Ala Ile Met Val Lys Gly Ala Phe

2135 2140 2145

Arg Cys Met Gly Thr Ile Gln His Leu Lys Ser Lys Phe Gly Asp

2150 2155 2160

Gly Tyr Ile Val Thr Met Lys Ile Lys Ser Pro Lys Asp Asp Leu

2165 2170 2175

Leu Pro Asp Leu Asn Pro Val Glu Gln Phe Phe Gln Gly Asn Phe

2180 2185 2190

Pro Gly Ser Val Gln Arg Glu Arg His Tyr Asn Met Leu Gln Phe

2195 2200 2205

Gln Val Ser Ser Ser Ser Leu Ala Arg Ile Phe Gln Leu Leu Leu

2210 2215 2220

Ser His Lys Asp Ser Leu Leu Ile Glu Glu Tyr Ser Val Thr Gln

2225 2230 2235

Thr Thr Leu Asp Gln Val Phe Val Asn Phe Ala Lys Gln Gln Thr

2240 2245 2250

Glu Ser His Asp Leu Pro Leu His Pro Arg Ala Ala Gly Ala Ser

2255 2260 2265

Arg Gln Ala Gln Asp

2270

<210> SEQ ID NO: 14

<211> LENGTH: 2608

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 14

tccttcttca ttctgcagtt ggtgccagaa ctctggatcc tgaactggaa gaaaatgtct 60

atccaggttg agcatcctgc tggtggttac aagaaactgt ttgaaactgt ggaggaactg 120

tcctcgccgc tcacagctca tgtaacaggc aggatccccc tctggctcac cggcagtctc 180

cttcgatgtg ggccaggact ctttgaagtt ggatctgagc cattttacca cctgtttgat 240

gggcaagccc tcctgcacaa gtttgacttt aaagaaggac atgtcacata ccacagaagg 300

ttcatccgca ctgatgctta cgtacgggca atgactgaga aaaggatcgt cataacagaa 360

tttggcacct gtgctttccc agatccctgc aagaatatat tttccaggtt tttttcttac 420

tttcgaggag tagaggttac tgacaatgcc cttgttaatg tctacccagt gggggaagat 480

tactacgctt gcacagagac caactttatt acaaagatta atccagagac cttggagaca 540

attaagcagg ttgatctttg caactatgtc tctgtcaatg gggccactgc tcacccccac 600

attgaaaatg atggaaccgt ttacaatatt ggtaattgct ttggaaaaaa tttttcaatt 660

gcctacaaca ttgtaaagat cccaccactg caagcagaca aggaagatcc aataagcaag 720

tcagagatcg ttgtacaatt cccctgcagt gaccgattca agccatctta cgttcatagt 780

tttggtctga ctcccaacta tatcgttttt gtggagacac cagtcaaaat taacctgttc 840

aagttccttt cttcatggag tctttgggga gccaactaca tggattgttt tgagtccaat 900

gaaaccatgg gggtttggct tcatattgct gacaaaaaaa ggaaaaagta cctcaataat 960

aaatacagaa cttctccttt caacctcttc catcacatca acacctatga agacaatggg 1020

tttctgattg tggatctctg ctgctggaaa ggatttgagt ttgtttataa ttacttatat 1080

ttagccaatt tacgtgagaa ctgggaagag gtgaaaaaaa atgccagaaa ggctccccaa 1140

cctgaagtta ggagatatgt acttcctttg aatattgaca aggctgacac aggcaagaat 1200

ttagtcacgc tccccaatac aactgccact gcaattctgt gcagtgacga gactatctgg 1260

ctggagcctg aagttctctt ttcagggcct cgtcaagcat ttgagtttcc tcaaatcaat 1320

taccagaagt attgtgggaa accttacaca tatgcgtatg gacttggctt gaatcacttt 1380

gttccagata ggctctgtaa gctgaatgtc aaaactaaag aaacttgggt ttggcaagag 1440

cctgattcat acccatcaga acccatcttt gtttctcacc cagatgcctt ggaagaagat 1500

gatggtgtag ttctgagtgt ggtggtgagc ccaggagcag gacaaaagcc tgcttatctc 1560

ctgattctga atgccaagga cttaagtgaa gttgcccggg ctgaagtgga gattaacatc 1620

cctgtcacct ttcatggact gttcaaaaaa tcttgagcat actccagcaa gatatgtttt 1680

tggtagcaaa actgagaaaa tcagcttcag gtctgcaatc aaattctgtt caattttagc 1740

ctgctatatg tcatggtttt aacttgcaga tgcgcacaat tttgcaatgt tttacagaaa 1800

gcactgagtt gagcaagcaa ttcctttatt taaaaaaaaa agtacgtatt tagataatca 1860

tacttcctct gtgagacagg ccataactga aaaactctta aatatttagc aatcaaatag 1920

gaaatgaatg tggacttact aaatggcttt taattcctat tataagagca tattttaggt 1980

acctatctgc tccaattata tttttaacat ttaaaaacca aagtcctcta cacttgattt 2040

atattatatg tggctttgct gagtcaagga agtatcatgc aataaggctt aattactaaa 2100

tgtcaaacca aactttttct caaaccaggg actatcatct aagattaatt acagtaatta 2160

ttttgcgtat acgtaactgc tcaaagatta tgaatcttat gaatgttaac ctttccgttt 2220

attacaagca agtactatta tttctgattt tataataaga aaatctgtgt ttaatcaact 2280

gaggcctctc aaccaaataa catctcagag attaagttat atattaaaag cttatgtaac 2340

ataaaagcaa gtacatatag tagtgactat atttaaaaaa acagcataaa atgcttaaaa 2400

atgtaatatt tactaaaatc agattatggg ataatgttgc aggattatac tttattgcat 2460

cttttttgtt taattgtatt taagcattgt gcaatcactt gggaaaaata ttaaattatt 2520

aacattgagg tattaataca ttttaagcct tttgttttta aatttctttt cttccagaga 2580

ttgtttaaaa ataaatattg acaaaaat 2608

<210> SEQ ID NO: 15

<211> LENGTH: 533

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 15

Met Ser Ile Gln Val Glu His Pro Ala Gly Gly Tyr Lys Lys Leu Phe

1 5 10 15

Glu Thr Val Glu Glu Leu Ser Ser Pro Leu Thr Ala His Val Thr Gly

20 25 30

Arg Ile Pro Leu Trp Leu Thr Gly Ser Leu Leu Arg Cys Gly Pro Gly

35 40 45

Leu Phe Glu Val Gly Ser Glu Pro Phe Tyr His Leu Phe Asp Gly Gln

50 55 60

Ala Leu Leu His Lys Phe Asp Phe Lys Glu Gly His Val Thr Tyr His

65 70 75 80

Arg Arg Phe Ile Arg Thr Asp Ala Tyr Val Arg Ala Met Thr Glu Lys

85 90 95

Arg Ile Val Ile Thr Glu Phe Gly Thr Cys Ala Phe Pro Asp Pro Cys

100 105 110

Lys Asn Ile Phe Ser Arg Phe Phe Ser Tyr Phe Arg Gly Val Glu Val

115 120 125

Thr Asp Asn Ala Leu Val Asn Val Tyr Pro Val Gly Glu Asp Tyr Tyr

130 135 140

Ala Cys Thr Glu Thr Asn Phe Ile Thr Lys Ile Asn Pro Glu Thr Leu

145 150 155 160

Glu Thr Ile Lys Gln Val Asp Leu Cys Asn Tyr Val Ser Val Asn Gly

165 170 175

Ala Thr Ala His Pro His Ile Glu Asn Asp Gly Thr Val Tyr Asn Ile

180 185 190

Gly Asn Cys Phe Gly Lys Asn Phe Ser Ile Ala Tyr Asn Ile Val Lys

195 200 205

Ile Pro Pro Leu Gln Ala Asp Lys Glu Asp Pro Ile Ser Lys Ser Glu

210 215 220

Ile Val Val Gln Phe Pro Cys Ser Asp Arg Phe Lys Pro Ser Tyr Val

225 230 235 240

His Ser Phe Gly Leu Thr Pro Asn Tyr Ile Val Phe Val Glu Thr Pro

245 250 255

Val Lys Ile Asn Leu Phe Lys Phe Leu Ser Ser Trp Ser Leu Trp Gly

260 265 270

Ala Asn Tyr Met Asp Cys Phe Glu Ser Asn Glu Thr Met Gly Val Trp

275 280 285

Leu His Ile Ala Asp Lys Lys Arg Lys Lys Tyr Leu Asn Asn Lys Tyr

290 295 300

Arg Thr Ser Pro Phe Asn Leu Phe His His Ile Asn Thr Tyr Glu Asp

305 310 315 320

Asn Gly Phe Leu Ile Val Asp Leu Cys Cys Trp Lys Gly Phe Glu Phe

325 330 335

Val Tyr Asn Tyr Leu Tyr Leu Ala Asn Leu Arg Glu Asn Trp Glu Glu

340 345 350

Val Lys Lys Asn Ala Arg Lys Ala Pro Gln Pro Glu Val Arg Arg Tyr

355 360 365

Val Leu Pro Leu Asn Ile Asp Lys Ala Asp Thr Gly Lys Asn Leu Val

370 375 380

Thr Leu Pro Asn Thr Thr Ala Thr Ala Ile Leu Cys Ser Asp Glu Thr

385 390 395 400

Ile Trp Leu Glu Pro Glu Val Leu Phe Ser Gly Pro Arg Gln Ala Phe

405 410 415

Glu Phe Pro Gln Ile Asn Tyr Gln Lys Tyr Cys Gly Lys Pro Tyr Thr

420 425 430

Tyr Ala Tyr Gly Leu Gly Leu Asn His Phe Val Pro Asp Arg Leu Cys

435 440 445

Lys Leu Asn Val Lys Thr Lys Glu Thr Trp Val Trp Gln Glu Pro Asp

450 455 460

Ser Tyr Pro Ser Glu Pro Ile Phe Val Ser His Pro Asp Ala Leu Glu

465 470 475 480

Glu Asp Asp Gly Val Val Leu Ser Val Val Val Ser Pro Gly Ala Gly

485 490 495

Gln Lys Pro Ala Tyr Leu Leu Ile Leu Asn Ala Lys Asp Leu Ser Glu

500 505 510

Val Ala Arg Ala Glu Val Glu Ile Asn Ile Pro Val Thr Phe His Gly

515 520 525

Leu Phe Lys Lys Ser

530

<210> SEQ ID NO: 16

<211> LENGTH: 1752

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 16

gagcccgatt taacggaaac tgtgggcggt gagaagttcc ttatgacaca ctaatcccaa 60

cctgctgacc ggaccacgcc tccagcggag ggaacctcta gagctccagg acattcaggt 120

accaggtagc cccaaggagg agctgccgac ctggcaggga acaaccaaga ctggggttaa 180

atctcacagc ctgcaagtgg aagagaagaa cttgaaccca ggtccaactt ttgcgccaca 240

gcaggctgcc tcttggtcct gacaggaagt cacaacttgg ccctgacttc ctatcctagg 300

gaaggggccg gctggagagg ccaggacaga gaaagcagat cccttctttt tccaaggact 360

ctgtgtcttc cataggcaac atgtcagaag gggtgggcac gttccgcatg gtacctgaag 420

aggaacagga gctccgtgcc caactggagc agctcacaac caaggaccat ggacctgtct 480

ttggcccgtg cagccagctg ccccgccaca ccttgcagaa ggccaaggat gagctgaacg 540

agagagagga gacccgggag gaggcagtgc gagagctgca ggagatggtg caggcgcagg 600

cggcctcggg ggaggagctg gcggtggccg tggcggagag ggtgcaagag aaggacagcg 660

gcttcttcct gcgcttcatc cgcgcacgga agttcaacgt gggccgtgcc tatgagctgc 720

tcagaggcta tgtgaatttc cggctgcagt accctgagct ctttgacagc ctgtccccag 780

aggctgtccg ctgcaccatt gaagctggct accctggtgt cctctctagt cgggacaagt 840

atggccgagt ggtcatgctc ttcaacattg agaactggca aagtcaagaa atcacctttg 900

atgagatctt gcaggcatat tgcttcatcc tggagaagct gctggagaat gaggaaactc 960

aaatcaatgg cttctgcatc attgagaact tcaagggctt taccatgcag caggctgcta 1020

gtctccggac ttcagatctc aggaagatgg tggacatgct ccaggattcc ttcccagccc 1080

ggttcaaagc catccacttc atccaccagc catggtactt caccacgacc tacaatgtgg 1140

tcaagccctt cttgaagagc aagctgcttg agagggtctt tgtccacggg gatgaccttt 1200

ctggtttcta ccaggagatc gatgagaaca tcctgccctc tgacttcggg ggcacgctgc 1260

ccaagtatga tggcaaggcc gttgctgagc agctctttgg cccccaggcc caagctgaga 1320

acacagcctt ctgaaaacat ctcctgccag ctgaactgta gttagaatct ctgggcctct 1380

cctcaactgt cctggaccca aggctaggaa agggctgctt gagatgactg tggtcccccc 1440

ttagactccc taagcccgag tgagctcagg tgtcaccctg ttctcaagtt gggggatggg 1500

taataaagga gggggaattc ccttgaacaa gaagaactgg ggatagttat atttccacct 1560

gcccttgaag ctttaagaca gtgatttttg tgtaaggttg tatttcaaag actcgaattc 1620

attttctcag tcatttcctt tgtaacagag ttttacgact tagagtctgt gaaaacaggc 1680

aaggagcccg ggttaaaata tccccctatt cgcccccaaa atgcaataaa agaagataaa 1740

agagagagga ta 1752

<210> SEQ ID NO: 17

<211> LENGTH: 317

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 17

Met Ser Glu Gly Val Gly Thr Phe Arg Met Val Pro Glu Glu Glu Gln

1 5 10 15

Glu Leu Arg Ala Gln Leu Glu Gln Leu Thr Thr Lys Asp His Gly Pro

20 25 30

Val Phe Gly Pro Cys Ser Gln Leu Pro Arg His Thr Leu Gln Lys Ala

35 40 45

Lys Asp Glu Leu Asn Glu Arg Glu Glu Thr Arg Glu Glu Ala Val Arg

50 55 60

Glu Leu Gln Glu Met Val Gln Ala Gln Ala Ala Ser Gly Glu Glu Leu

65 70 75 80

Ala Val Ala Val Ala Glu Arg Val Gln Glu Lys Asp Ser Gly Phe Phe

85 90 95

Leu Arg Phe Ile Arg Ala Arg Lys Phe Asn Val Gly Arg Ala Tyr Glu

100 105 110

Leu Leu Arg Gly Tyr Val Asn Phe Arg Leu Gln Tyr Pro Glu Leu Phe

115 120 125

Asp Ser Leu Ser Pro Glu Ala Val Arg Cys Thr Ile Glu Ala Gly Tyr

130 135 140

Pro Gly Val Leu Ser Ser Arg Asp Lys Tyr Gly Arg Val Val Met Leu

145 150 155 160

Phe Asn Ile Glu Asn Trp Gln Ser Gln Glu Ile Thr Phe Asp Glu Ile

165 170 175

Leu Gln Ala Tyr Cys Phe Ile Leu Glu Lys Leu Leu Glu Asn Glu Glu

180 185 190

Thr Gln Ile Asn Gly Phe Cys Ile Ile Glu Asn Phe Lys Gly Phe Thr

195 200 205

Met Gln Gln Ala Ala Ser Leu Arg Thr Ser Asp Leu Arg Lys Met Val

210 215 220

Asp Met Leu Gln Asp Ser Phe Pro Ala Arg Phe Lys Ala Ile His Phe

225 230 235 240

Ile His Gln Pro Trp Tyr Phe Thr Thr Thr Tyr Asn Val Val Lys Pro

245 250 255

Phe Leu Lys Ser Lys Leu Leu Glu Arg Val Phe Val His Gly Asp Asp

260 265 270

Leu Ser Gly Phe Tyr Gln Glu Ile Asp Glu Asn Ile Leu Pro Ser Asp

275 280 285

Phe Gly Gly Thr Leu Pro Lys Tyr Asp Gly Lys Ala Val Ala Glu Gln

290 295 300

Leu Phe Gly Pro Gln Ala Gln Ala Glu Asn Thr Ala Phe

305 310 315

<210> SEQ ID NO: 18

<211> LENGTH: 3027

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 18

cagcgttcag gctgcccctt cttggctggg aagggcgctg aagaaacaac gcccaggacc 60

aggactatcc cctgctcaag ctgtgattcc gagacccctg ccaccactac tgcattcacg 120

gggatcccag gctagtggga ctcgacatgg gtagccccca gggcagctcc ctacagcttg 180

ggccatctgc acttttccca aggccctaag tctccgcctc tgggctcgtt aaggtttggg 240

gtgggagctg tgctgtggga agcaacccgg actacacttg gcaagcatgg cgctactgaa 300

agtcaagttt gaccagaaga agcgggtcaa gttggcccaa gggctctggc tcatgaactg 360

gttctccgtg ttggctggca tcatcatctt cagcctagga ctgttcctga agattgaact 420

ccgaaagagg agcgatgtga tgaataattc tgagagccat tttgtgccca actcattgat 480

agggatgggg gtgctatcct gtgtcttcaa ctcgctggct gggaagatct gctacgacgc 540

cctggaccca gccaagtatg ccagatggaa gccctggctg aagccgtacc tggctatctg 600

tgttctcttc aacatcatcc tcttccttgt ggctctctgc tgctttctgc ttcggggctc 660

gctggagaac accctgggcc aagggctcaa gaacggcatg aagtactacc gggacacaga 720

cacccctggc aggtgtttca tgaagaagac catcgacatg ctgcagatcg agttcaaatg 780

ctgcggcaac aacggttttc gggactggtt tgagattcag tggatcagca atcgctacct 840

ggacttttcc tccaaagaag tcaaagatcg aatcaagagc aacgtggatg ggcggtacct 900

ggtggacggc gtccctttca gctgctgcaa tcctagctcg ccacggccct gcatccagta 960

tcagatcacc aacaactcag cacactacag ttacgaccac cagacggagg agctcaacct 1020

gtgggtgcgt ggctgcaggg ctgccctgct gagctactac agcagcctca tgaactccat 1080

gggtgtcgtc acgctcctca tttggctctt cgaggtgacc attacaattg ggctgcgcta 1140

cctacagacg tcgctggatg gtgtgtccaa ccccgaggaa tctgagagcg agagccaggg 1200

ctggctgctg gagaggagcg tgccggagac ctggaaggcc tttctggaga gtgtgaagaa 1260

gctgggcaag ggcaaccagg tggaagccga gggcgcagac gcaggccagg ccccagaggc 1320

tggctgaggg ccctggggcc cctcccctcc cgaacactga gaaatagtgc actccaagaa 1380

acgtggatct ccccctcatc caactccgaa agtctgaatc tcccaaggag ggcaccatct 1440

tacagagact ctccctgacg gtggaattta agtttagggt ccctaaaagc atttgacaca 1500

cagttgttga atgactgacc caaaatgtga atgaagctaa tgtgaatgtg agtgaagctc 1560

ccttcaggcc cgctgcccta ggatatgccc tcctggtgac tcgggggctg tctcagacga 1620

ctagcccagg acccatcttt ctcacacgga tttagtccca ccctatggcc actggccgta 1680

tctgagggct gctccccttt tagaatttac ctcttatgag ctccatgttg cttcactcta 1740

tccaaagtgt cacttggtgc ataagcacag aaatctgaaa aatggccatg ttgtcttttt 1800

tttttttttt taatgccaag attgacaggt tggccgtttg cttaatgcca gaagttgggg 1860

gaaagttacg cttttctaag aataatggac tcttaaggca ttgagggctc taaacaggat 1920

tctttaatca tggagcaaga gaatttcaag gcaggggatt ttatccccca ccaaaaacac 1980

agtgaaaggc ctgcttttgt gtcccattca catgccctcg gtcactgagt ctggagtgaa 2040

ccacgggttg aggaagtcag gctgttggcg tgtcccagca ccacaccacc cctaaagtgc 2100

caggtgatct cctgtggctc atcggtggaa gcagtggggt aggctgctgc cctgctgtgg 2160

aagaggagca acaatcagac atgagtccac cctttggaga ccaggcctca gctcttggtg 2220

ggcccaggga cacccacaca ggtggccatc acagccccat ggacaacact aattgtccac 2280

agcaaagggc aaggaatcct ctgggagctt cttccgtttc ttccccccag atacccatct 2340

tgaaaaacac tatttctgga atgcttctgc atcaaaggag attctttgag atagcccatc 2400

ttcctgagct agcaaataca ggagttttca ctttctttag gaaagagaag ctttcagggg 2460

aaggagagaa tgattttgct gacttcccaa gccctggtga ccagaccaag gcagggccca 2520

gcataattcc tccagttgga tgaacattca agagagctcg ttcctacctg gctggagacc 2580

gaggccagaa ggcaaaaacc agaaagggaa cagtccataa cttacctctg cttctgaccg 2640

atggtgtttg ggaataggtt actttggact gagtttgggt tctctgctgt cctaagaact 2700

tcagtgtaga gaaaataaga cttctggtgc tgctggggta tgttctgggc ttaattcccc 2760

caagcagaag accagatcca agatgtttgg acaccctgtc agacgttggt cccaagttta 2820

attagatttc tgaatctcgt tgaggccaag gaatgatcca tactgaaaaa atgctgagcc 2880

agccatcttt ggcaaaggtc cctgagctct tgctatctct caagagtgct gagaaccacg 2940

gtgaaagtgc tgctctaggc ccacaagtgt aactatgctg ttaacagctg tcaatagata 3000

attaaaattc atactgtatg aaaatca 3027

<210> SEQ ID NO: 19

<211> LENGTH: 346

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 19

Met Ala Leu Leu Lys Val Lys Phe Asp Gln Lys Lys Arg Val Lys Leu

1 5 10 15

Ala Gln Gly Leu Trp Leu Met Asn Trp Phe Ser Val Leu Ala Gly Ile

20 25 30

Ile Ile Phe Ser Leu Gly Leu Phe Leu Lys Ile Glu Leu Arg Lys Arg

35 40 45

Ser Asp Val Met Asn Asn Ser Glu Ser His Phe Val Pro Asn Ser Leu

50 55 60

Ile Gly Met Gly Val Leu Ser Cys Val Phe Asn Ser Leu Ala Gly Lys

65 70 75 80

Ile Cys Tyr Asp Ala Leu Asp Pro Ala Lys Tyr Ala Arg Trp Lys Pro

85 90 95

Trp Leu Lys Pro Tyr Leu Ala Ile Cys Val Leu Phe Asn Ile Ile Leu

100 105 110

Phe Leu Val Ala Leu Cys Cys Phe Leu Leu Arg Gly Ser Leu Glu Asn

115 120 125

Thr Leu Gly Gln Gly Leu Lys Asn Gly Met Lys Tyr Tyr Arg Asp Thr

130 135 140

Asp Thr Pro Gly Arg Cys Phe Met Lys Lys Thr Ile Asp Met Leu Gln

145 150 155 160

Ile Glu Phe Lys Cys Cys Gly Asn Asn Gly Phe Arg Asp Trp Phe Glu

165 170 175

Ile Gln Trp Ile Ser Asn Arg Tyr Leu Asp Phe Ser Ser Lys Glu Val

180 185 190

Lys Asp Arg Ile Lys Ser Asn Val Asp Gly Arg Tyr Leu Val Asp Gly

195 200 205

Val Pro Phe Ser Cys Cys Asn Pro Ser Ser Pro Arg Pro Cys Ile Gln

210 215 220

Tyr Gln Ile Thr Asn Asn Ser Ala His Tyr Ser Tyr Asp His Gln Thr

225 230 235 240

Glu Glu Leu Asn Leu Trp Val Arg Gly Cys Arg Ala Ala Leu Leu Ser

245 250 255

Tyr Tyr Ser Ser Leu Met Asn Ser Met Gly Val Val Thr Leu Leu Ile

260 265 270

Trp Leu Phe Glu Val Thr Ile Thr Ile Gly Leu Arg Tyr Leu Gln Thr

275 280 285

Ser Leu Asp Gly Val Ser Asn Pro Glu Glu Ser Glu Ser Glu Ser Gln

290 295 300

Gly Trp Leu Leu Glu Arg Ser Val Pro Glu Thr Trp Lys Ala Phe Leu

305 310 315 320

Glu Ser Val Lys Lys Leu Gly Lys Gly Asn Gln Val Glu Ala Glu Gly

325 330 335

Ala Asp Ala Gly Gln Ala Pro Glu Ala Gly

340 345

<210> SEQ ID NO: 20

<211> LENGTH: 1767

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 20

gtcagctggg tgactcatac atctgtgaga ccctccgtat ggagaccggg gcggggggtg 60

ttgcttaatg cttagaactg ctgaaactac cagttcactg tctcagcact aatccaactc 120

tgctccttaa gtgggatttg gcttttagac attgagacct ggatgctggg catcctcgct 180

agatccccta caaattcccc acatacgtag gccaggagcc tcagcggtgc cccttcaggc 240

tcatctggca agacggtacc agcttgctca gaacaggggc tggctattca tcatctcaga 300

gcatagagac cctctccttg ccacccggcc cttcccacct ggttggtgac aaatcacaag 360

gtggtagaag ttgccaggga cagataacat ggcagccagc gggaagacca gcaagtccga 420

accgaaccat gttatcttca agaagatctc ccgggacaaa tcggtgacca tctacctggg 480

gaacagagac tacatagacc atgtcagcca agtccagcct gtggatggtg tcgtgttggt 540

tgatcctgat cttgtgaagg gaaagaaagt gtatgtcact ctgacctgcg ccttccgcta 600

tggccaagag gacattgacg tgatcggctt gaccttccgc agggacctgt acttctcccg 660

ggtccaggtg tatcctcctg tgggggccgc gagcaccccc acaaaactgc aagagagcct 720

gcttaaaaag ctggggagca acacgtaccc ctttctcctg acgtttcctg actacttgcc 780

ctgttcagtg atgttgcagc cagctccaca agattcaggg aagtcctgtg gggttgactt 840

tgaggtcaaa gcattcgcca cagacagcac cgatgccgaa gaggacaaaa tccccaagaa 900

gagctccgtg cgattactga tccgcaaagt acagcatgcc ccacttgaga tgggtcccca 960

gccccgagct gaggcggcct ggcagttctt catgtctgac aagcccctgc accttgcggt 1020

ctctctcaac aaagagatct atttccatgg ggagcccatc cctgtgaccg tgactgtcac 1080

caataacaca gagaagaccg tgaagaagat taaagcattc gtggaacagg tggccaatgt 1140

ggttctctac tcgagtgatt attacgtcaa gcccgtggct atggaggaag cgcaagaaaa 1200

agtgccacca aacagcactt tgaccaagac gctgacgctg ctgcccttgc tggctaacaa 1260

tcgagaaagg agaggcattg ccctggatgg gaaaatcaag cacgaggaca caaaccttgc 1320

ctccagcacc atcattaagg agggcataga ccggaccgtc ctgggaatcc tggtgtctta 1380

ccagatcaag gtgaagctca cagtgtcagg ctttctggga gagctcacct ccagtgaagt 1440

cgccactgag gtcccattcc gcctcatgca ccctcagcct gaggacccag ctaaggaaag 1500

ttatcaggat gcaaatttag tttttgagga gtttgctcgc cataatctga aagatgcagg 1560

agaagctgag gaggggaaga gagacaagaa tgacgttgat gagtgaagat gtcggctcag 1620

gatgccggaa aatgacctgt agttaccagt gcaacgagca aagccccaca gtttagtcct 1680

ttggagttat gctgcgtatg aaaggatgag tcttcttccg agaaataaag cttgtttgtt 1740

ctcccctgga aaaaaaaaaa aaaaaaa 1767

<210> SEQ ID NO: 21

<211> LENGTH: 405

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 21

Met Ala Ala Ser Gly Lys Thr Ser Lys Ser Glu Pro Asn His Val Ile

1 5 10 15

Phe Lys Lys Ile Ser Arg Asp Lys Ser Val Thr Ile Tyr Leu Gly Asn

20 25 30

Arg Asp Tyr Ile Asp His Val Ser Gln Val Gln Pro Val Asp Gly Val

35 40 45

Val Leu Val Asp Pro Asp Leu Val Lys Gly Lys Lys Val Tyr Val Thr

50 55 60

Leu Thr Cys Ala Phe Arg Tyr Gly Gln Glu Asp Ile Asp Val Ile Gly

65 70 75 80

Leu Thr Phe Arg Arg Asp Leu Tyr Phe Ser Arg Val Gln Val Tyr Pro

85 90 95

Pro Val Gly Ala Ala Ser Thr Pro Thr Lys Leu Gln Glu Ser Leu Leu

100 105 110

Lys Lys Leu Gly Ser Asn Thr Tyr Pro Phe Leu Leu Thr Phe Pro Asp

115 120 125

Tyr Leu Pro Cys Ser Val Met Leu Gln Pro Ala Pro Gln Asp Ser Gly

130 135 140

Lys Ser Cys Gly Val Asp Phe Glu Val Lys Ala Phe Ala Thr Asp Ser

145 150 155 160

Thr Asp Ala Glu Glu Asp Lys Ile Pro Lys Lys Ser Ser Val Arg Leu

165 170 175

Leu Ile Arg Lys Val Gln His Ala Pro Leu Glu Met Gly Pro Gln Pro

180 185 190

Arg Ala Glu Ala Ala Trp Gln Phe Phe Met Ser Asp Lys Pro Leu His

195 200 205

Leu Ala Val Ser Leu Asn Lys Glu Ile Tyr Phe His Gly Glu Pro Ile

210 215 220

Pro Val Thr Val Thr Val Thr Asn Asn Thr Glu Lys Thr Val Lys Lys

225 230 235 240

Ile Lys Ala Phe Val Glu Gln Val Ala Asn Val Val Leu Tyr Ser Ser

245 250 255

Asp Tyr Tyr Val Lys Pro Val Ala Met Glu Glu Ala Gln Glu Lys Val

260 265 270

Pro Pro Asn Ser Thr Leu Thr Lys Thr Leu Thr Leu Leu Pro Leu Leu

275 280 285

Ala Asn Asn Arg Glu Arg Arg Gly Ile Ala Leu Asp Gly Lys Ile Lys

290 295 300

His Glu Asp Thr Asn Leu Ala Ser Ser Thr Ile Ile Lys Glu Gly Ile

305 310 315 320

Asp Arg Thr Val Leu Gly Ile Leu Val Ser Tyr Gln Ile Lys Val Lys

325 330 335

Leu Thr Val Ser Gly Phe Leu Gly Glu Leu Thr Ser Ser Glu Val Ala

340 345 350

Thr Glu Val Pro Phe Arg Leu Met His Pro Gln Pro Glu Asp Pro Ala

355 360 365

Lys Glu Ser Tyr Gln Asp Ala Asn Leu Val Phe Glu Glu Phe Ala Arg

370 375 380

His Asn Leu Lys Asp Ala Gly Glu Ala Glu Glu Gly Lys Arg Asp Lys

385 390 395 400

Asn Asp Val Asp Glu

405

<210> SEQ ID NO: 22

<211> LENGTH: 2483

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 22

agttgattgc aggtcctcct ggggccagaa gggtgcctgg gaggccaggt tctggggatc 60

ccctccatcc agaagaacca cctgctcact ctgtcccttc gcctgctgct gggaccatgg 120

gggctggggc cagtgctgag gagaagcact ccagggagct ggaaaagaag ctgaaagagg 180

acgctgagaa ggatgctcga accgtgaagc tgctgcttct gggtgccggt gagtccggga 240

agagcaccat cgtcaagcag atgaagatta tccaccagga cgggtactcg ctggaagagt 300

gcctcgagtt tatcgccatc atctacggca acacgttgca gtccatcctg gccatcgtac 360

gcgccatgac cacactcaac atccagtacg gagactctgc acgccaggac gacgcccgga 420

agctgatgca catggcagac actatcgagg agggcacgat gcccaaggag atgtcggaca 480

tcatccagcg gctgtggaag gactccggta tccaggcctg ttttgagcgc gcctcggagt 540

accagctcaa cgactcggcg ggctactacc tctccgacct ggagcgcctg gtaaccccgg 600

gctacgtgcc caccgagcag gacgtgctgc gctcgcgagt caagaccact ggcatcatcg 660

agacgcagtt ctccttcaag gatctcaact tccggatgtt cgatgtgggc gggcagcgct 720

cggagcgcaa gaagtggatc cactgcttcg agggcgtgac ctgcatcatc ttcatcgcgg 780

cgctgagcgc ctacgacatg gtgctagtgg aggacgacga agtgaaccgc atgcacgaga 840

gcctgcacct gttcaacagc atctgcaacc accgctactt cgccacgacg tccatcgtgc 900

tcttccttaa caagaaggac gtcttcttcg agaagatcaa gaaggcgcac ctcagcatct 960

gtttcccgga ctacgatgga cccaacacct acgaggacgc cggcaactac atcaaggtgc 1020

agttcctcga gctcaacatg cggcgcgacg tgaaggagat ctattcccac atgacgtgcg 1080

ccaccgacac gcagaacgtc aaatttgtct tcgacgctgt caccgacatc atcatcaagg 1140

agaacctcaa agactgtggc ctcttctgag gccagggcct gtgctgcagt cggggacaag 1200

gagcttccgt ctggcaaggc cggggcacaa tttgcactcc cctcagctag acgcacagac 1260

tcagcaataa acctttgcat caggctccag ctgtcctttc ttggtggagg acttaattat 1320

cacaagtcat gggcatttat taagtgccca gtgctgggtt gggcatgaag tgggaagatg 1380

gcccctccca ggaagaagta cctggcctga caaggtgggg cactcttggg ggtatgggac 1440

caactcatgg cttttcacgg gagttgagga gagaggagct gtggaaaata ttcactggga 1500

cagtcttgga tcaagaggga gttttgaggt ggaggctcat tctggcaggg accgtagtgt 1560

ctaccagccc cagaaacatg ggcttatggc cacaggagtt cagtggagca agagcagggg 1620

aggagagacg tggacaggtg cccaaagcca gtcggagggc ctgggctttc tcagaaggtg 1680

atggagagtc ttggaagccc tcgaggcagg aacataattg cagggctggg attagggtga 1740

gggaagtgag gcacactcac cttgggtgca acatttaagg cgatgccaaa aaatttagta 1800

accaaggtaa ataatattag gataatattt ttaaaaatca aatgaatgca aaaccccaca 1860

atgaatgaaa tatcaaaatc caacagagga tcaaacagag gcatgctaag atatattggg 1920

gcttgaagca aagggaaaac tatttgttgc tatatgtttg tagggatttt ttgccagttt 1980

taaaaataca tgtatcataa agtttactat ctcagccact tgccggtgta tagtttggtg 2040

gtgttaagta cattcataat gttgtacaac caccgcaact gttcatctcc agaactcctt 2100

tcctcttgta aaactgtaac tctgtaccca tgaaaaaata accccccatt cctgccttcc 2160

cccggctcct ggcatccacc attctacttt ccatctctat gaatgtgact gctctaagtg 2220

cctcagatgt gtgggtccat gaagtctttg tctttttgca actggcttat ttcacttagc 2280

atcatgtctt caaggtttat tcatgtgtag catatggcag aatctccttc ctttttaagg 2340

ttgaataata ttccattgta tatattccac actttgttta tttattcatc tattgatgaa 2400

tggttacatc tgccttttgg ctattgtgaa taatgctgct atgaacatgg gtgtacaaat 2460

ctctcaaaaa aaaaaaaaaa aaa 2483

<210> SEQ ID NO: 23

<211> LENGTH: 350

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 23

Met Gly Ala Gly Ala Ser Ala Glu Glu Lys His Ser Arg Glu Leu Glu

1 5 10 15

Lys Lys Leu Lys Glu Asp Ala Glu Lys Asp Ala Arg Thr Val Lys Leu

20 25 30

Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln

35 40 45

Met Lys Ile Ile His Gln Asp Gly Tyr Ser Leu Glu Glu Cys Leu Glu

50 55 60

Phe Ile Ala Ile Ile Tyr Gly Asn Thr Leu Gln Ser Ile Leu Ala Ile

65 70 75 80

Val Arg Ala Met Thr Thr Leu Asn Ile Gln Tyr Gly Asp Ser Ala Arg

85 90 95

Gln Asp Asp Ala Arg Lys Leu Met His Met Ala Asp Thr Ile Glu Glu

100 105 110

Gly Thr Met Pro Lys Glu Met Ser Asp Ile Ile Gln Arg Leu Trp Lys

115 120 125

Asp Ser Gly Ile Gln Ala Cys Phe Glu Arg Ala Ser Glu Tyr Gln Leu

130 135 140

Asn Asp Ser Ala Gly Tyr Tyr Leu Ser Asp Leu Glu Arg Leu Val Thr

145 150 155 160

Pro Gly Tyr Val Pro Thr Glu Gln Asp Val Leu Arg Ser Arg Val Lys

165 170 175

Thr Thr Gly Ile Ile Glu Thr Gln Phe Ser Phe Lys Asp Leu Asn Phe

180 185 190

Arg Met Phe Asp Val Gly Gly Gln Arg Ser Glu Arg Lys Lys Trp Ile

195 200 205

His Cys Phe Glu Gly Val Thr Cys Ile Ile Phe Ile Ala Ala Leu Ser

210 215 220

Ala Tyr Asp Met Val Leu Val Glu Asp Asp Glu Val Asn Arg Met His

225 230 235 240

Glu Ser Leu His Leu Phe Asn Ser Ile Cys Asn His Arg Tyr Phe Ala

245 250 255

Thr Thr Ser Ile Val Leu Phe Leu Asn Lys Lys Asp Val Phe Phe Glu

260 265 270

Lys Ile Lys Lys Ala His Leu Ser Ile Cys Phe Pro Asp Tyr Asp Gly

275 280 285

Pro Asn Thr Tyr Glu Asp Ala Gly Asn Tyr Ile Lys Val Gln Phe Leu

290 295 300

Glu Leu Asn Met Arg Arg Asp Val Lys Glu Ile Tyr Ser His Met Thr

305 310 315 320

Cys Ala Thr Asp Thr Gln Asn Val Lys Phe Val Phe Asp Ala Val Thr

325 330 335

Asp Ile Ile Ile Lys Glu Asn Leu Lys Asp Cys Gly Leu Phe

340 345 350

<210> SEQ ID NO: 24

<211> LENGTH: 201

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 24

Met Gly Asn Val Met Glu Gly Lys Ser Val Glu Glu Leu Ser Ser Thr

1 5 10 15

Glu Cys His Gln Trp Tyr Lys Lys Phe Met Thr Glu Cys Pro Ser Gly

20 25 30

Gln Leu Thr Leu Tyr Glu Phe Arg Gln Phe Phe Gly Leu Lys Asn Leu

35 40 45

Ser Pro Ser Ala Ser Gln Tyr Val Glu Gln Met Phe Glu Thr Phe Asp

50 55 60

Phe Asn Lys Asp Gly Tyr Ile Asp Phe Met Glu Tyr Val Ala Ala Leu

65 70 75 80

Ser Leu Val Leu Lys Gly Lys Val Glu Gln Lys Leu Arg Trp Tyr Phe

85 90 95

Lys Leu Tyr Asp Val Asp Gly Asn Gly Cys Ile Asp Arg Asp Glu Leu

100 105 110

Leu Thr Ile Ile Gln Ala Ile Arg Ala Ile Asn Pro Cys Ser Asp Thr

115 120 125

Thr Met Thr Ala Glu Glu Phe Thr Asp Thr Val Phe Ser Lys Ile Asp

130 135 140

Val Asn Gly Asp Gly Glu Leu Ser Leu Glu Glu Phe Ile Glu Gly Val

145 150 155 160

Gln Lys Asp Gln Met Leu Leu Asp Thr Leu Thr Arg Ser Leu Asp Leu

165 170 175

Thr Arg Ile Val Arg Arg Leu Gln Asn Gly Glu Gln Asp Glu Glu Gly

180 185 190

Ala Asp Glu Ala Ala Glu Ala Ala Gly

195 200

<210> SEQ ID NO: 25

<211> LENGTH: 1103

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 25

Met Thr Ala Cys Ala Arg Arg Ala Gly Gly Leu Pro Asp Pro Gly Leu

1 5 10 15

Cys Gly Pro Ala Trp Trp Ala Pro Ser Leu Pro Arg Leu Pro Arg Ala

20 25 30

Leu Pro Arg Leu Pro Leu Leu Leu Leu Leu Leu Leu Leu Gln Pro Pro

35 40 45

Ala Leu Ser Ala Val Phe Thr Val Gly Val Leu Gly Pro Trp Ala Cys

50 55 60

Asp Pro Ile Phe Ser Arg Ala Arg Pro Asp Leu Ala Ala Arg Leu Ala

65 70 75 80

Ala Ala Arg Leu Asn Arg Asp Pro Gly Leu Ala Gly Gly Pro Arg Phe

85 90 95

Glu Val Ala Leu Leu Pro Glu Pro Cys Arg Thr Pro Gly Ser Leu Gly

100 105 110

Ala Val Ser Ser Ala Leu Ala Arg Val Ser Gly Leu Val Gly Pro Val

115 120 125

Asn Pro Ala Ala Cys Arg Pro Ala Glu Leu Leu Ala Glu Glu Ala Gly

130 135 140

Ile Ala Leu Val Pro Trp Gly Cys Pro Trp Thr Gln Ala Glu Gly Thr

145 150 155 160

Thr Ala Pro Ala Val Thr Pro Ala Ala Asp Ala Leu Tyr Ala Leu Leu

165 170 175

Arg Ala Phe Gly Trp Ala Arg Val Ala Leu Val Thr Ala Pro Gln Asp

180 185 190

Leu Trp Val Glu Ala Gly Arg Ser Leu Ser Thr Ala Leu Arg Ala Arg

195 200 205

Gly Leu Pro Val Ala Ser Val Thr Ser Met Glu Pro Leu Asp Leu Ser

210 215 220

Gly Ala Arg Glu Ala Leu Arg Lys Val Arg Asp Gly Pro Arg Val Thr

225 230 235 240

Ala Val Ile Met Val Met His Ser Val Leu Leu Gly Gly Glu Glu Gln

245 250 255

Arg Tyr Leu Leu Glu Ala Ala Glu Glu Leu Gly Leu Thr Asp Gly Ser

260 265 270

Leu Val Phe Leu Pro Phe Asp Thr Ile His Tyr Ala Leu Ser Pro Gly

275 280 285

Pro Glu Ala Leu Ala Ala Leu Ala Asn Ser Ser Gln Leu Arg Arg Ala

290 295 300

His Asp Ala Val Leu Thr Leu Thr Arg His Cys Pro Ser Glu Gly Ser

305 310 315 320

Val Leu Asp Ser Leu Arg Arg Ala Gln Glu Arg Arg Glu Leu Pro Ser

325 330 335

Asp Leu Asn Leu Gln Gln Val Ser Pro Leu Phe Gly Thr Ile Tyr Asp

340 345 350

Ala Val Phe Leu Leu Ala Arg Gly Val Ala Glu Ala Arg Ala Ala Ala

355 360 365

Gly Gly Arg Trp Val Ser Gly Ala Ala Val Ala Arg His Ile Arg Asp

370 375 380

Ala Gln Val Pro Gly Phe Cys Gly Asp Leu Gly Gly Asp Glu Glu Pro

385 390 395 400

Pro Phe Val Leu Leu Asp Thr Asp Ala Ala Gly Asp Arg Leu Phe Ala

405 410 415

Thr Tyr Met Leu Asp Pro Ala Arg Gly Ser Phe Leu Ser Ala Gly Thr

420 425 430

Arg Met His Phe Pro Arg Gly Gly Ser Ala Pro Gly Pro Asp Pro Ser

435 440 445

Cys Trp Phe Asp Pro Asn Asn Ile Cys Gly Gly Gly Leu Glu Pro Gly

450 455 460

Leu Val Phe Leu Gly Phe Leu Leu Val Val Gly Met Gly Leu Ala Gly

465 470 475 480

Ala Phe Leu Ala His Tyr Val Arg His Arg Leu Leu His Met Gln Met

485 490 495

Val Ser Gly Pro Asn Lys Ile Ile Leu Thr Val Asp Asp Ile Thr Phe

500 505 510

Leu His Pro His Gly Gly Thr Ser Arg Lys Val Ala Gln Gly Ser Arg

515 520 525

Ser Ser Leu Gly Ala Arg Ser Met Ser Asp Ile Arg Ser Gly Pro Ser

530 535 540

Gln His Leu Asp Ser Pro Asn Ile Gly Val Tyr Glu Gly Asp Arg Val

545 550 555 560

Trp Leu Lys Lys Phe Pro Gly Asp Gln His Ile Ala Ile Arg Pro Ala

565 570 575

Thr Lys Thr Ala Phe Ser Lys Leu Gln Glu Leu Arg His Glu Asn Val

580 585 590

Ala Leu Tyr Leu Gly Leu Phe Leu Ala Arg Gly Ala Glu Gly Pro Ala

595 600 605

Ala Leu Trp Glu Gly Asn Leu Ala Val Val Ser Glu His Cys Thr Arg

610 615 620

Gly Ser Leu Gln Asp Leu Leu Ala Gln Arg Glu Ile Lys Leu Asp Trp

625 630 635 640

Met Phe Lys Ser Ser Leu Leu Leu Asp Leu Ile Lys Gly Ile Arg Tyr

645 650 655

Leu His His Arg Gly Val Ala His Gly Arg Leu Lys Ser Arg Asn Cys

660 665 670

Ile Val Asp Gly Arg Phe Val Leu Lys Ile Thr Asp His Gly His Gly

675 680 685

Arg Leu Leu Glu Ala Gln Lys Val Leu Pro Glu Pro Pro Arg Ala Glu

690 695 700

Asp Gln Leu Trp Thr Ala Pro Glu Leu Leu Arg Asp Pro Ala Leu Glu

705 710 715 720

Arg Arg Gly Thr Leu Ala Gly Asp Val Phe Ser Leu Ala Ile Ile Met

725 730 735

Gln Glu Val Val Cys Arg Ser Ala Pro Tyr Ala Met Leu Glu Leu Thr

740 745 750

Pro Glu Glu Val Val Gln Arg Val Arg Ser Pro Pro Pro Leu Cys Arg

755 760 765

Pro Leu Val Ser Met Asp Gln Ala Pro Val Glu Cys Ile Leu Leu Met

770 775 780

Lys Gln Cys Trp Ala Glu Gln Pro Glu Leu Arg Pro Ser Met Asp His

785 790 795 800

Thr Phe Asp Leu Phe Lys Asn Ile Asn Lys Gly Arg Lys Thr Asn Ile

805 810 815

Ile Asp Ser Met Leu Arg Met Leu Glu Gln Tyr Ser Ser Asn Leu Glu

820 825 830

Asp Leu Ile Arg Glu Arg Thr Glu Glu Leu Glu Leu Glu Lys Gln Lys

835 840 845

Thr Asp Arg Leu Leu Thr Gln Met Leu Pro Pro Ser Val Ala Glu Ala

850 855 860

Leu Lys Thr Gly Thr Pro Val Glu Pro Glu Tyr Phe Glu Gln Val Thr

865 870 875 880

Leu Tyr Phe Ser Asp Ile Val Gly Phe Thr Thr Ile Ser Ala Met Ser

885 890 895

Glu Pro Ile Glu Val Val Asp Leu Leu Asn Asp Leu Tyr Thr Leu Phe

900 905 910

Asp Ala Ile Ile Gly Ser His Asp Val Tyr Lys Val Glu Thr Ile Gly

915 920 925

Asp Ala Tyr Met Val Ala Ser Gly Leu Pro Gln Arg Asn Gly Gln Arg

930 935 940

His Ala Ala Glu Ile Ala Asn Met Ser Leu Asp Ile Leu Ser Ala Val

945 950 955 960

Gly Thr Phe Arg Met Arg His Met Pro Glu Val Pro Val Arg Ile Arg

965 970 975

Ile Gly Leu His Ser Gly Pro Cys Val Ala Gly Val Val Gly Leu Thr

980 985 990

Met Pro Arg Tyr Cys Leu Phe Gly Asp Thr Val Asn Thr Ala Ser Arg

995 1000 1005

Met Glu Ser Thr Gly Leu Pro Tyr Arg Ile His Val Asn Leu Ser

1010 1015 1020

Thr Val Gly Ile Leu Arg Ala Leu Asp Ser Gly Tyr Gln Val Glu

1025 1030 1035

Leu Arg Gly Arg Thr Glu Leu Lys Gly Lys Gly Ala Glu Asp Thr

1040 1045 1050

Phe Trp Leu Val Gly Arg Arg Gly Phe Asn Lys Pro Ile Pro Lys

1055 1060 1065

Pro Pro Asp Leu Gln Pro Gly Ser Ser Asn His Gly Ile Ser Leu

1070 1075 1080

Gln Glu Ile Pro Pro Glu Arg Arg Arg Lys Leu Glu Lys Ala Arg

1085 1090 1095

Pro Gly Gln Phe Ser

1100

<210> SEQ ID NO: 26

<211> LENGTH: 676

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 26

Met Ala Lys Ile Asn Thr Gln Tyr Ser His Pro Ser Arg Thr His Leu

1 5 10 15

Lys Val Lys Thr Ser Asp Arg Asp Leu Asn Arg Ala Glu Asn Gly Leu

20 25 30

Ser Arg Ala His Ser Ser Ser Glu Glu Thr Ser Ser Val Leu Gln Pro

35 40 45

Gly Ile Ala Met Glu Thr Arg Gly Leu Ala Asp Ser Gly Gln Gly Ser

50 55 60

Phe Thr Gly Gln Gly Ile Ala Arg Leu Ser Arg Leu Ile Phe Leu Leu

65 70 75 80

Arg Arg Trp Ala Ala Arg His Val His His Gln Asp Gln Gly Pro Asp

85 90 95

Ser Phe Pro Asp Arg Phe Arg Gly Ala Glu Leu Lys Glu Val Ser Ser

100 105 110

Gln Glu Ser Asn Ala Gln Ala Asn Val Gly Ser Gln Glu Pro Ala Asp

115 120 125

Arg Gly Arg Arg Lys Lys Thr Lys Lys Lys Asp Ala Ile Val Val Asp

130 135 140

Pro Ser Ser Asn Leu Tyr Tyr Arg Trp Leu Thr Ala Ile Ala Leu Pro

145 150 155 160

Val Phe Tyr Asn Trp Tyr Leu Leu Ile Cys Arg Ala Cys Phe Asp Glu

165 170 175

Leu Gln Ser Glu Tyr Leu Met Leu Trp Leu Val Leu Asp Tyr Ser Ala

180 185 190

Asp Val Leu Tyr Val Leu Asp Val Leu Val Arg Ala Arg Thr Gly Phe

195 200 205

Leu Glu Gln Gly Leu Met Val Ser Asp Thr Asn Arg Leu Trp Gln His

210 215 220

Tyr Lys Thr Thr Thr Gln Phe Lys Leu Asp Val Leu Ser Leu Val Pro

225 230 235 240

Thr Asp Leu Ala Tyr Leu Lys Val Gly Thr Asn Tyr Pro Glu Val Arg

245 250 255

Phe Asn Arg Leu Leu Lys Phe Ser Arg Leu Phe Glu Phe Phe Asp Arg

260 265 270

Thr Glu Thr Arg Thr Asn Tyr Pro Asn Met Phe Arg Ile Gly Asn Leu

275 280 285

Val Leu Tyr Ile Leu Ile Ile Ile His Trp Asn Ala Cys Ile Tyr Phe

290 295 300

Ala Ile Ser Lys Phe Ile Gly Phe Gly Thr Asp Ser Trp Val Tyr Pro

305 310 315 320

Asn Ile Ser Ile Pro Glu His Gly Arg Leu Ser Arg Lys Tyr Ile Tyr

325 330 335

Ser Leu Tyr Trp Ser Thr Leu Thr Leu Thr Thr Ile Gly Glu Thr Pro

340 345 350

Pro Pro Val Lys Asp Glu Glu Tyr Leu Phe Val Val Val Asp Phe Leu

355 360 365

Val Gly Val Leu Ile Phe Ala Thr Ile Val Gly Asn Val Gly Ser Met

370 375 380

Ile Ser Asn Met Asn Ala Ser Arg Ala Glu Phe Gln Ala Lys Ile Asp

385 390 395 400

Ser Ile Lys Gln Tyr Met Gln Phe Arg Lys Val Thr Lys Asp Leu Glu

405 410 415

Thr Arg Val Ile Arg Trp Phe Asp Tyr Leu Trp Ala Asn Lys Lys Thr

420 425 430

Val Asp Glu Lys Glu Val Leu Lys Ser Leu Pro Asp Lys Leu Lys Ala

435 440 445

Glu Ile Ala Ile Asn Val His Leu Asp Thr Leu Lys Lys Val Arg Ile

450 455 460

Phe Gln Asp Cys Glu Ala Gly Leu Leu Val Glu Leu Val Leu Lys Leu

465 470 475 480

Arg Pro Thr Val Phe Ser Pro Gly Asp Tyr Ile Cys Lys Lys Gly Asp

485 490 495

Ile Gly Lys Glu Met Tyr Ile Ile Asn Glu Gly Lys Leu Ala Val Val

500 505 510

Ala Asp Asp Gly Val Thr Gln Phe Val Val Leu Ser Asp Gly Ser Tyr

515 520 525

Phe Gly Glu Ile Ser Ile Leu Asn Ile Lys Gly Ser Lys Ser Gly Asn

530 535 540

Arg Arg Thr Ala Asn Ile Arg Ser Ile Gly Tyr Ser Asp Leu Phe Cys

545 550 555 560

Leu Ser Lys Asp Asp Leu Met Glu Ala Leu Thr Glu Tyr Pro Glu Ala

565 570 575

Lys Lys Ala Leu Glu Glu Lys Gly Arg Gln Ile Leu Met Lys Asp Asn

580 585 590

Leu Ile Asp Glu Glu Leu Ala Arg Ala Gly Ala Asp Pro Lys Asp Leu

595 600 605

Glu Glu Lys Val Glu Gln Leu Gly Ser Ser Leu Asp Thr Leu Gln Thr

610 615 620

Arg Phe Ala Arg Leu Leu Ala Glu Tyr Asn Ala Thr Gln Met Lys Met

625 630 635 640

Lys Gln Arg Leu Ser Gln Leu Glu Ser Gln Val Lys Gly Gly Gly Asp

645 650 655

Lys Pro Leu Ala Asp Gly Glu Val Pro Gly Asp Ala Thr Lys Thr Glu

660 665 670

Asp Lys Gln Gln

675

<210> SEQ ID NO: 27

<211> LENGTH: 694

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 27

Met Ala Lys Ile Asn Thr Gln Tyr Ser His Pro Ser Arg Thr His Leu

1 5 10 15

Lys Val Lys Thr Ser Asp Arg Asp Leu Asn Arg Ala Glu Asn Gly Leu

20 25 30

Ser Arg Ala His Ser Ser Ser Glu Glu Thr Ser Ser Val Leu Gln Pro

35 40 45

Gly Ile Ala Met Glu Thr Arg Gly Leu Ala Asp Ser Gly Gln Gly Ser

50 55 60

Phe Thr Gly Gln Gly Ile Ala Arg Leu Ser Arg Leu Ile Phe Leu Leu

65 70 75 80

Arg Arg Trp Ala Ala Arg His Val His His Gln Asp Gln Gly Pro Asp

85 90 95

Ser Phe Pro Asp Arg Phe Arg Gly Ala Glu Leu Lys Glu Val Ser Ser

100 105 110

Gln Glu Ser Asn Ala Gln Ala Asn Val Gly Ser Gln Glu Pro Ala Asp

115 120 125

Arg Gly Arg Ser Ala Trp Pro Leu Ala Lys Cys Asn Thr Asn Thr Ser

130 135 140

Asn Asn Thr Glu Glu Glu Lys Lys Thr Lys Lys Lys Asp Ala Ile Val

145 150 155 160

Val Asp Pro Ser Ser Asn Leu Tyr Tyr Arg Trp Leu Thr Ala Ile Ala

165 170 175

Leu Pro Val Phe Tyr Asn Trp Tyr Leu Leu Ile Cys Arg Ala Cys Phe

180 185 190

Asp Glu Leu Gln Ser Glu Tyr Leu Met Leu Trp Leu Val Leu Asp Tyr

195 200 205

Ser Ala Asp Val Leu Tyr Val Leu Asp Val Leu Val Arg Ala Arg Thr

210 215 220

Gly Phe Leu Glu Gln Gly Leu Met Val Ser Asp Thr Asn Arg Leu Trp

225 230 235 240

Gln His Tyr Lys Thr Thr Thr Gln Phe Lys Leu Asp Val Leu Ser Leu

245 250 255

Val Pro Thr Asp Leu Ala Tyr Leu Lys Val Gly Thr Asn Tyr Pro Glu

260 265 270

Val Arg Phe Asn Arg Leu Leu Lys Phe Ser Arg Leu Phe Glu Phe Phe

275 280 285

Asp Arg Thr Glu Thr Arg Thr Asn Tyr Pro Asn Met Phe Arg Ile Gly

290 295 300

Asn Leu Val Leu Tyr Ile Leu Ile Ile Ile His Trp Asn Ala Cys Ile

305 310 315 320

Tyr Phe Ala Ile Ser Lys Phe Ile Gly Phe Gly Thr Asp Ser Trp Val

325 330 335

Tyr Pro Asn Ile Ser Ile Pro Glu His Gly Arg Leu Ser Arg Lys Tyr

340 345 350

Ile Tyr Ser Leu Tyr Trp Ser Thr Leu Thr Leu Thr Thr Ile Gly Glu

355 360 365

Thr Pro Pro Pro Val Lys Asp Glu Glu Tyr Leu Phe Val Val Val Asp

370 375 380

Phe Leu Val Gly Val Leu Ile Phe Ala Thr Ile Val Gly Asn Val Gly

385 390 395 400

Ser Met Ile Ser Asn Met Asn Ala Ser Arg Ala Glu Phe Gln Ala Lys

405 410 415

Ile Asp Ser Ile Lys Gln Tyr Met Gln Phe Arg Lys Val Thr Lys Asp

420 425 430

Leu Glu Thr Arg Val Ile Arg Trp Phe Asp Tyr Leu Trp Ala Asn Lys

435 440 445

Lys Thr Val Asp Glu Lys Glu Val Leu Lys Ser Leu Pro Asp Lys Leu

450 455 460

Lys Ala Glu Ile Ala Ile Asn Val His Leu Asp Thr Leu Lys Lys Val

465 470 475 480

Arg Ile Phe Gln Asp Cys Glu Ala Gly Leu Leu Val Glu Leu Val Leu

485 490 495

Lys Leu Arg Pro Thr Val Phe Ser Pro Gly Asp Tyr Ile Cys Lys Lys

500 505 510

Gly Asp Ile Gly Lys Glu Met Tyr Ile Ile Asn Glu Gly Lys Leu Ala

515 520 525

Val Val Ala Asp Asp Gly Val Thr Gln Phe Val Val Leu Ser Asp Gly

530 535 540

Ser Tyr Phe Gly Glu Ile Ser Ile Leu Asn Ile Lys Gly Ser Lys Ser

545 550 555 560

Gly Asn Arg Arg Thr Ala Asn Ile Arg Ser Ile Gly Tyr Ser Asp Leu

565 570 575

Phe Cys Leu Ser Lys Asp Asp Leu Met Glu Ala Leu Thr Glu Tyr Pro

580 585 590

Glu Ala Lys Lys Ala Leu Glu Glu Lys Gly Arg Gln Ile Leu Met Lys

595 600 605

Asp Asn Leu Ile Asp Glu Glu Leu Ala Arg Ala Gly Ala Asp Pro Lys

610 615 620

Asp Leu Glu Glu Lys Val Glu Gln Leu Gly Ser Ser Leu Asp Thr Leu

625 630 635 640

Gln Thr Arg Phe Ala Arg Leu Leu Ala Glu Tyr Asn Ala Thr Gln Met

645 650 655

Lys Met Lys Gln Arg Leu Ser Gln Leu Glu Ser Gln Val Lys Gly Gly

660 665 670

Gly Asp Lys Pro Leu Ala Asp Gly Glu Val Pro Gly Asp Ala Thr Lys

675 680 685

Thr Glu Asp Lys Gln Gln

690

<210> SEQ ID NO: 28

<211> LENGTH: 354

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 28

Met Gly Ser Gly Ala Ser Ala Glu Asp Lys Glu Leu Ala Lys Arg Ser

1 5 10 15

Lys Glu Leu Glu Lys Lys Leu Gln Glu Asp Ala Asp Lys Glu Ala Lys

20 25 30

Thr Val Lys Leu Leu Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr

35 40 45

Ile Val Lys Gln Met Lys Ile Ile His Gln Asp Gly Tyr Ser Pro Glu

50 55 60

Glu Cys Leu Glu Phe Lys Ala Ile Ile Tyr Gly Asn Val Leu Gln Ser

65 70 75 80

Ile Leu Ala Ile Ile Arg Ala Met Thr Thr Leu Gly Ile Asp Tyr Ala

85 90 95

Glu Pro Ser Cys Ala Asp Asp Gly Arg Gln Leu Asn Asn Leu Ala Asp

100 105 110

Ser Ile Glu Glu Gly Thr Met Pro Pro Glu Leu Val Glu Val Ile Arg

115 120 125

Arg Leu Trp Lys Asp Gly Gly Val Gln Ala Cys Phe Glu Arg Ala Ala

130 135 140

Glu Tyr Gln Leu Asn Asp Ser Ala Ser Tyr Tyr Leu Asn Gln Leu Glu

145 150 155 160

Arg Ile Thr Asp Pro Glu Tyr Leu Pro Ser Glu Gln Asp Val Leu Arg

165 170 175

Ser Arg Val Lys Thr Thr Gly Ile Ile Glu Thr Lys Phe Ser Val Lys

180 185 190

Asp Leu Asn Phe Arg Met Phe Asp Val Gly Gly Gln Arg Ser Glu Arg

195 200 205

Lys Lys Trp Ile His Cys Phe Glu Gly Val Thr Cys Ile Ile Phe Cys

210 215 220

Ala Ala Leu Ser Ala Tyr Asp Met Val Leu Val Glu Asp Asp Glu Val

225 230 235 240

Asn Arg Met His Glu Ser Leu His Leu Phe Asn Ser Ile Cys Asn His

245 250 255

Lys Phe Phe Ala Ala Thr Ser Ile Val Leu Phe Leu Asn Lys Lys Asp

260 265 270

Leu Phe Glu Glu Lys Ile Lys Lys Val His Leu Ser Ile Cys Phe Pro

275 280 285

Glu Tyr Asp Gly Asn Asn Ser Tyr Asp Asp Ala Gly Asn Tyr Ile Lys

290 295 300

Ser Gln Phe Leu Asp Leu Asn Met Arg Lys Asp Val Lys Glu Ile Tyr

305 310 315 320

Ser His Met Thr Cys Ala Thr Asp Thr Gln Asn Val Lys Phe Val Phe

325 330 335

Asp Ala Val Thr Asp Ile Ile Ile Lys Glu Asn Leu Lys Asp Cys Gly

340 345 350

Leu Phe

<210> SEQ ID NO: 29

<211> LENGTH: 858

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 29

Met Gly Glu Ile Asn Gln Val Ala Val Glu Lys Tyr Leu Glu Glu Asn

1 5 10 15

Pro Gln Phe Ala Lys Glu Tyr Phe Asp Arg Lys Leu Arg Val Glu Val

20 25 30

Leu Gly Glu Ile Phe Lys Asn Ser Gln Val Pro Val Gln Ser Ser Met

35 40 45

Ser Phe Ser Glu Leu Thr Gln Val Glu Glu Ser Ala Leu Cys Leu Glu

50 55 60

Leu Leu Trp Thr Val Gln Glu Glu Gly Gly Thr Pro Glu Gln Gly Val

65 70 75 80

His Arg Ala Leu Gln Arg Leu Ala His Leu Leu Gln Ala Asp Arg Cys

85 90 95

Ser Met Phe Leu Cys Arg Ser Arg Asn Gly Ile Pro Glu Val Ala Ser

100 105 110

Arg Leu Leu Asp Val Thr Pro Thr Ser Lys Phe Glu Asp Asn Leu Val

115 120 125

Gly Pro Asp Lys Glu Val Val Phe Pro Leu Asp Ile Gly Ile Val Gly

130 135 140

Trp Ala Ala His Thr Lys Lys Thr His Asn Val Pro Asp Val Lys Lys

145 150 155 160

Asn Ser His Phe Ser Asp Phe Met Asp Lys Gln Thr Gly Tyr Val Thr

165 170 175

Lys Asn Leu Leu Ala Thr Pro Ile Val Val Gly Lys Glu Val Leu Ala

180 185 190

Val Ile Met Ala Val Asn Lys Val Asn Ala Ser Glu Phe Ser Lys Gln

195 200 205

Asp Glu Glu Val Phe Ser Lys Tyr Leu Asn Phe Val Ser Ile Ile Leu

210 215 220

Arg Leu His His Thr Ser Tyr Met Tyr Asn Ile Glu Ser Arg Arg Ser

225 230 235 240

Gln Ile Leu Met Trp Ser Ala Asn Lys Val Phe Glu Glu Leu Thr Asp

245 250 255

Val Glu Arg Gln Phe His Lys Ala Leu Tyr Thr Val Arg Ser Tyr Leu

260 265 270

Asn Cys Glu Arg Tyr Ser Ile Gly Leu Leu Asp Met Thr Lys Glu Lys

275 280 285

Glu Phe Tyr Asp Glu Trp Pro Ile Lys Leu Gly Glu Val Glu Pro Tyr

290 295 300

Lys Gly Pro Lys Thr Pro Asp Gly Arg Glu Val Asn Phe Tyr Lys Ile

305 310 315 320

Ile Asp Tyr Ile Leu His Gly Lys Glu Glu Ile Lys Val Ile Pro Thr

325 330 335

Pro Pro Ala Asp His Trp Thr Leu Ile Ser Gly Leu Pro Thr Tyr Val

340 345 350

Ala Glu Asn Gly Phe Ile Cys Asn Met Met Asn Ala Pro Ala Asp Glu

355 360 365

Tyr Phe Thr Phe Gln Lys Gly Pro Val Asp Glu Thr Gly Trp Val Ile

370 375 380

Lys Asn Val Leu Ser Leu Pro Ile Val Asn Lys Lys Glu Asp Ile Val

385 390 395 400

Gly Val Ala Thr Phe Tyr Asn Arg Lys Asp Gly Lys Pro Phe Asp Glu

405 410 415

His Asp Glu Tyr Ile Thr Glu Thr Leu Thr Gln Phe Leu Gly Trp Ser

420 425 430

Leu Leu Asn Thr Asp Thr Tyr Asp Lys Met Asn Lys Leu Glu Asn Arg

435 440 445

Lys Asp Ile Ala Gln Glu Met Leu Met Asn Gln Thr Lys Ala Thr Pro

450 455 460

Glu Glu Ile Lys Ser Ile Leu Lys Phe Gln Glu Lys Leu Asn Val Asp

465 470 475 480

Val Ile Asp Asp Cys Glu Glu Lys Gln Leu Val Ala Ile Leu Lys Glu

485 490 495

Asp Leu Pro Asp Pro Arg Ser Ala Glu Leu Tyr Glu Phe Arg Phe Ser

500 505 510

Asp Phe Pro Leu Thr Glu His Gly Leu Ile Lys Cys Gly Ile Arg Leu

515 520 525

Phe Phe Glu Ile Asn Val Val Glu Lys Phe Lys Val Pro Val Glu Val

530 535 540

Leu Thr Arg Trp Met Tyr Thr Val Arg Lys Gly Tyr Arg Ala Val Thr

545 550 555 560

Tyr His Asn Trp Arg His Gly Phe Asn Val Gly Gln Thr Met Phe Thr

565 570 575

Leu Leu Met Thr Gly Arg Leu Lys Lys Tyr Tyr Thr Asp Leu Glu Ala

580 585 590

Phe Ala Met Leu Ala Ala Ala Phe Cys His Asp Ile Asp His Arg Gly

595 600 605

Thr Asn Asn Leu Tyr Gln Met Lys Ser Thr Ser Pro Leu Ala Arg Leu

610 615 620

His Gly Ser Ser Ile Leu Glu Arg His His Leu Glu Tyr Ser Lys Thr

625 630 635 640

Leu Leu Gln Asp Glu Ser Leu Asn Ile Phe Gln Asn Leu Asn Lys Arg

645 650 655

Gln Phe Glu Thr Val Ile His Leu Phe Glu Val Ala Ile Ile Ala Thr

660 665 670

Asp Leu Ala Leu Tyr Phe Lys Lys Arg Thr Met Phe Gln Lys Ile Val

675 680 685

Asp Ala Cys Glu Gln Met Gln Thr Glu Glu Glu Ala Ile Lys Tyr Val

690 695 700

Thr Val Asp Pro Thr Lys Lys Glu Ile Ile Met Ala Met Met Met Thr

705 710 715 720

Ala Cys Asp Leu Ser Ala Ile Thr Lys Pro Trp Glu Val Gln Ser Gln

725 730 735

Val Ala Leu Met Val Ala Asn Glu Phe Trp Glu Gln Gly Asp Leu Glu

740 745 750

Arg Thr Val Leu Gln Gln Gln Pro Ile Pro Met Met Asp Arg Asn Lys

755 760 765

Arg Asp Glu Leu Pro Lys Leu Gln Val Gly Phe Ile Asp Phe Val Cys

770 775 780

Thr Phe Val Tyr Lys Glu Phe Ser Arg Phe His Lys Glu Ile Thr Pro

785 790 795 800

Met Leu Ser Gly Leu Gln Asn Asn Arg Val Glu Trp Lys Ser Leu Ala

805 810 815

Asp Glu Tyr Asp Ala Lys Met Lys Val Ile Glu Glu Glu Ala Lys Lys

820 825 830

Gln Glu Gly Gly Ala Glu Lys Ala Ala Glu Asp Ser Gly Gly Gly Asp

835 840 845

Asp Lys Lys Ser Lys Thr Cys Leu Met Leu

850 855

<210> SEQ ID NO: 30

<211> LENGTH: 83

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 30

Met Ser Asp Asn Thr Thr Leu Pro Ala Pro Ala Ser Asn Gln Gly Pro

1 5 10 15

Thr Thr Pro Arg Lys Gly Pro Pro Lys Phe Lys Gln Arg Gln Thr Arg

20 25 30

Gln Phe Lys Ser Lys Pro Pro Lys Lys Gly Val Lys Gly Phe Gly Asp

35 40 45

Asp Ile Pro Gly Met Glu Gly Leu Gly Thr Asp Ile Thr Val Ile Cys

50 55 60

Pro Trp Glu Ala Phe Ser His Leu Glu Leu His Glu Leu Ala Gln Phe

65 70 75 80

Gly Ile Ile

<210> SEQ ID NO: 31

<211> LENGTH: 299

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 31

Met Met Ala Tyr Met Asn Pro Gly Pro His Tyr Ser Val Asn Ala Leu

1 5 10 15

Ala Leu Ser Gly Pro Ser Val Asp Leu Met His Gln Ala Val Pro Tyr

20 25 30

Pro Ser Ala Pro Arg Lys Gln Arg Arg Glu Arg Thr Thr Phe Thr Arg

35 40 45

Ser Gln Leu Glu Glu Leu Glu Ala Leu Phe Ala Lys Thr Gln Tyr Pro

50 55 60

Asp Val Tyr Ala Arg Glu Glu Val Ala Leu Lys Ile Asn Leu Pro Glu

65 70 75 80

Ser Arg Val Gln Val Trp Phe Lys Asn Arg Arg Ala Lys Cys Arg Gln

85 90 95

Gln Arg Gln Gln Gln Lys Gln Gln Gln Gln Pro Pro Gly Gly Gln Ala

100 105 110

Lys Ala Arg Pro Ala Lys Arg Lys Ala Gly Thr Ser Pro Arg Pro Ser

115 120 125

Thr Asp Val Cys Pro Asp Pro Leu Gly Ile Ser Asp Ser Tyr Ser Pro

130 135 140

Pro Leu Pro Gly Pro Ser Gly Ser Pro Thr Thr Ala Val Ala Thr Val

145 150 155 160

Ser Ile Trp Ser Pro Ala Ser Glu Ser Pro Leu Pro Glu Ala Gln Arg

165 170 175

Ala Gly Leu Val Ala Ser Gly Pro Ser Leu Thr Ser Ala Pro Tyr Ala

180 185 190

Met Thr Tyr Ala Pro Ala Ser Ala Phe Cys Ser Ser Pro Ser Ala Tyr

195 200 205

Gly Ser Pro Ser Ser Tyr Phe Ser Gly Leu Asp Pro Tyr Leu Ser Pro

210 215 220

Met Val Pro Gln Leu Gly Gly Pro Ala Leu Ser Pro Leu Ser Gly Pro

225 230 235 240

Ser Val Gly Pro Ser Leu Ala Gln Ser Pro Thr Ser Leu Ser Gly Gln

245 250 255

Ser Tyr Gly Ala Tyr Ser Pro Val Asp Ser Leu Glu Phe Lys Asp Pro

260 265 270

Thr Gly Thr Trp Lys Phe Thr Tyr Asn Pro Met Asp Pro Leu Asp Tyr

275 280 285

Lys Asp Gln Ser Ala Trp Lys Phe Gln Ile Leu

290 295

<210> SEQ ID NO: 32

<211> LENGTH: 809

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 32

Met Phe Lys Ser Leu Thr Lys Val Asn Lys Val Lys Pro Ile Gly Glu

1 5 10 15

Asn Asn Glu Asn Glu Gln Ser Ser Arg Arg Asn Glu Glu Gly Ser His

20 25 30

Pro Ser Asn Gln Ser Gln Gln Thr Thr Ala Gln Glu Glu Asn Lys Gly

35 40 45

Glu Glu Lys Ser Leu Lys Thr Lys Ser Thr Pro Val Thr Ser Glu Glu

50 55 60

Pro His Thr Asn Ile Gln Asp Lys Leu Ser Lys Lys Asn Ser Ser Gly

65 70 75 80

Asp Leu Thr Thr Asn Pro Asp Pro Gln Asn Ala Ala Glu Pro Thr Gly

85 90 95

Thr Val Pro Glu Gln Lys Glu Met Asp Pro Gly Lys Glu Gly Pro Asn

100 105 110

Ser Pro Gln Asn Lys Pro Pro Ala Ala Pro Val Ile Asn Glu Tyr Ala

115 120 125

Asp Ala Gln Leu His Asn Leu Val Lys Arg Met Arg Gln Arg Thr Ala

130 135 140

Leu Tyr Lys Lys Lys Leu Val Glu Gly Asp Leu Ser Ser Pro Glu Ala

145 150 155 160

Ser Pro Gln Thr Ala Lys Pro Thr Ala Val Pro Pro Val Lys Glu Ser

165 170 175

Asp Asp Lys Pro Thr Glu His Tyr Tyr Arg Leu Leu Trp Phe Lys Val

180 185 190

Lys Lys Met Pro Leu Thr Glu Tyr Leu Lys Arg Ile Lys Leu Pro Asn

195 200 205

Ser Ile Asp Ser Tyr Thr Asp Arg Leu Tyr Leu Leu Trp Leu Leu Leu

210 215 220

Val Thr Leu Ala Tyr Asn Trp Asn Cys Trp Phe Ile Pro Leu Arg Leu

225 230 235 240

Val Phe Pro Tyr Gln Thr Ala Asp Asn Ile His Tyr Trp Leu Ile Ala

245 250 255

Asp Ile Ile Cys Asp Ile Ile Tyr Leu Tyr Asp Met Leu Phe Ile Gln

260 265 270

Pro Arg Leu Gln Phe Val Arg Gly Gly Asp Ile Ile Val Asp Ser Asn

275 280 285

Glu Leu Arg Lys His Tyr Arg Thr Ser Thr Lys Phe Gln Leu Asp Val

290 295 300

Ala Ser Ile Ile Pro Phe Asp Ile Cys Tyr Leu Phe Phe Gly Phe Asn

305 310 315 320

Pro Met Phe Arg Ala Asn Arg Met Leu Lys Tyr Thr Ser Phe Phe Glu

325 330 335

Phe Asn His His Leu Glu Ser Ile Met Asp Lys Ala Tyr Ile Tyr Arg

340 345 350

Val Ile Arg Thr Thr Gly Tyr Leu Leu Phe Ile Leu His Ile Asn Ala

355 360 365

Cys Val Tyr Tyr Trp Ala Ser Asn Tyr Glu Gly Ile Gly Thr Thr Arg

370 375 380

Trp Val Tyr Asp Gly Glu Gly Asn Glu Tyr Leu Arg Cys Tyr Tyr Trp

385 390 395 400

Ala Val Arg Thr Leu Ile Thr Ile Gly Gly Leu Pro Glu Pro Gln Thr

405 410 415

Leu Phe Glu Ile Val Phe Gln Leu Leu Asn Phe Phe Ser Gly Val Phe

420 425 430

Val Phe Ser Ser Leu Ile Gly Gln Met Arg Asp Val Ile Gly Ala Ala

435 440 445

Thr Ala Asn Gln Asn Tyr Phe Arg Ala Cys Met Asp Asp Thr Ile Ala

450 455 460

Tyr Met Asn Asn Tyr Ser Ile Pro Lys Leu Val Gln Lys Arg Val Arg

465 470 475 480

Thr Trp Tyr Glu Tyr Thr Trp Asp Ser Gln Arg Met Leu Asp Glu Ser

485 490 495

Asp Leu Leu Lys Thr Leu Pro Thr Thr Val Gln Leu Ala Leu Ala Ile

500 505 510

Asp Val Asn Phe Ser Ile Ile Ser Lys Val Asp Leu Phe Lys Gly Cys

515 520 525

Asp Thr Gln Met Ile Tyr Asp Met Leu Leu Arg Leu Lys Ser Val Leu

530 535 540

Tyr Leu Pro Gly Asp Phe Val Cys Lys Lys Gly Glu Ile Gly Lys Glu

545 550 555 560

Met Tyr Ile Ile Lys His Gly Glu Val Gln Val Leu Gly Gly Pro Asp

565 570 575

Gly Thr Lys Val Leu Val Thr Leu Lys Ala Gly Ser Val Phe Gly Glu

580 585 590

Ile Ser Leu Leu Ala Ala Gly Gly Gly Asn Arg Arg Thr Ala Asn Val

595 600 605

Val Ala His Gly Phe Ala Asn Leu Leu Thr Leu Asp Lys Lys Thr Leu

610 615 620

Gln Glu Ile Leu Val His Tyr Pro Asp Ser Glu Arg Ile Leu Met Lys

625 630 635 640

Lys Ala Arg Val Leu Leu Lys Gln Lys Ala Lys Thr Ala Glu Ala Thr

645 650 655

Pro Pro Arg Lys Asp Leu Ala Leu Leu Phe Pro Pro Lys Glu Glu Thr

660 665 670

Pro Lys Leu Phe Lys Thr Leu Leu Gly Gly Thr Gly Lys Ala Ser Leu

675 680 685

Ala Arg Leu Leu Lys Leu Lys Arg Glu Gln Ala Ala Gln Lys Lys Glu

690 695 700

Asn Ser Glu Gly Gly Glu Glu Glu Gly Lys Glu Asn Glu Asp Lys Gln

705 710 715 720

Lys Glu Asn Glu Asp Lys Gln Lys Glu Asn Glu Asp Lys Gly Lys Glu

725 730 735

Asn Glu Asp Lys Asp Lys Gly Arg Glu Pro Glu Glu Lys Pro Leu Asp

740 745 750

Arg Pro Glu Cys Thr Ala Ser Pro Ile Ala Val Glu Glu Glu Pro His

755 760 765

Ser Val Arg Arg Thr Val Leu Pro Arg Gly Thr Ser Arg Gln Ser Leu

770 775 780

Ile Ile Ser Met Ala Pro Ser Ala Glu Gly Gly Glu Glu Val Leu Thr

785 790 795 800

Ile Glu Val Lys Glu Lys Ala Lys Gln

805

<210> SEQ ID NO: 33

<211> LENGTH: 610

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 33

Met Pro Leu Thr Glu Tyr Leu Lys Arg Ile Lys Leu Pro Asn Ser Ile

1 5 10 15

Asp Ser Tyr Thr Asp Arg Leu Tyr Leu Leu Trp Leu Leu Leu Val Thr

20 25 30

Leu Ala Tyr Asn Trp Asn Cys Cys Phe Ile Pro Leu Arg Leu Val Phe

35 40 45

Pro Tyr Gln Thr Ala Asp Asn Ile His Tyr Trp Leu Ile Ala Asp Ile

50 55 60

Ile Cys Asp Ile Ile Tyr Leu Tyr Asp Met Leu Phe Ile Gln Pro Arg

65 70 75 80

Leu Gln Phe Val Arg Gly Gly Asp Ile Ile Val Asp Ser Asn Glu Leu

85 90 95

Arg Lys His Tyr Arg Thr Ser Thr Lys Phe Gln Leu Asp Val Ala Ser

100 105 110

Ile Ile Pro Phe Asp Ile Cys Tyr Leu Phe Phe Gly Phe Asn Pro Met

115 120 125

Phe Arg Ala Asn Arg Met Leu Lys Tyr Thr Ser Phe Phe Glu Phe Asn

130 135 140

His His Leu Glu Ser Ile Met Asp Lys Ala Tyr Ile Tyr Arg Val Ile

145 150 155 160

Arg Thr Thr Gly Tyr Leu Leu Phe Ile Leu His Ile Asn Ala Cys Val

165 170 175

Tyr Tyr Trp Ala Ser Asn Tyr Glu Gly Ile Gly Thr Thr Arg Trp Val

180 185 190

Tyr Asp Gly Glu Gly Asn Glu Tyr Leu Arg Cys Tyr Tyr Trp Ala Val

195 200 205

Arg Thr Leu Ile Thr Ile Gly Gly Leu Pro Glu Pro Gln Thr Leu Phe

210 215 220

Glu Ile Val Phe Gln Leu Leu Asn Phe Phe Ser Gly Val Phe Val Phe

225 230 235 240

Ser Ser Leu Ile Gly Gln Met Arg Asp Val Ile Gly Ala Ala Thr Ala

245 250 255

Asn Gln Asn Tyr Phe Arg Ala Cys Met Asp Asp Thr Ile Ala Tyr Met

260 265 270

Asn Asn Tyr Ser Ile Pro Lys Leu Val Gln Lys Arg Val Arg Thr Trp

275 280 285

Tyr Glu Tyr Thr Trp Asp Ser Gln Arg Met Leu Asp Glu Ser Asp Leu

290 295 300

Leu Lys Thr Leu Pro Thr Thr Val Gln Leu Ala Leu Ala Ile Asp Val

305 310 315 320

Asn Phe Ser Ile Ile Ser Lys Val Asp Leu Phe Lys Gly Cys Asp Thr

325 330 335

Gln Met Ile Tyr Asp Met Leu Leu Arg Leu Lys Ser Val Leu Tyr Leu

340 345 350

Pro Gly Asp Phe Val Cys Lys Lys Gly Glu Ile Gly Lys Glu Met Tyr

355 360 365

Ile Ile Lys His Gly Glu Val Gln Val Leu Gly Gly Pro Asp Gly Thr

370 375 380

Lys Val Leu Val Thr Leu Lys Ala Gly Ser Val Leu Leu Ala Ala Gly

385 390 395 400

Gly Gly Asn Arg Arg Thr Ala Asn Val Val Ala His Gly Phe Ala Asn

405 410 415

Leu Leu Thr Leu Asp Lys Lys Thr Leu Gln Glu Ile Leu Val His Tyr

420 425 430

Pro Asp Ser Glu Arg Ile Leu Met Lys Lys Ala Arg Val Leu Leu Lys

435 440 445

Gln Lys Ala Lys Thr Ala Glu Ala Thr Pro Pro Arg Lys Asp Leu Ala

450 455 460

Leu Leu Phe Pro Pro Lys Glu Glu Thr Pro Lys Leu Phe Lys Thr Leu

465 470 475 480

Leu Gly Gly Thr Gly Lys Ala Ser Leu Ala Arg Leu Leu Lys Leu Lys

485 490 495

Arg Glu Gln Ala Ala Gln Lys Lys Glu Asn Ser Glu Gly Gly Glu Glu

500 505 510

Glu Gly Lys Glu Asn Glu Asp Lys Gln Lys Glu Asn Glu Asp Lys Gln

515 520 525

Lys Glu Asn Glu Asp Lys Gly Lys Glu Asn Glu Asp Lys Asp Lys Gly

530 535 540

Arg Glu Pro Glu Glu Lys Pro Leu Asp Arg Pro Glu Cys Thr Ala Ser

545 550 555 560

Pro Ile Ala Val Glu Glu Glu Pro His Ser Val Arg Arg Thr Val Leu

565 570 575

Pro Arg Gly Thr Ser Arg Gln Ser Leu Ile Ile Ser Met Ala Pro Ser

580 585 590

Ala Glu Gly Gly Glu Glu Val Leu Thr Ile Glu Val Lys Glu Lys Ala

595 600 605

Lys Gln

610

<210> SEQ ID NO: 34

<211> LENGTH: 7100

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 34

gacatactga gaataaatcc aaagacatta gtttctttgc acgaaatgag gttacatatc 60

cagtgacatt tatttgagct atttaaacaa cttaaacatc tttttctttt cttaataagg 120

gacgtttcaa gttgtggtct cagccaaaat gagtgatacc ccttctactg gtttttccat 180

cattcatcct acgtcttctg aaggtcaagt tccaccccct cgccatttga gcctcactca 240

tcctgttgtg gccaagcgaa tcagtttcta caagagcgga gacccccaat tcggcggggt 300

cagggtggtg gtcaaccctc gctcctttaa gtcctttgat gctctgctgg ataacttgtc 360

caggaaggtg cccctccctt ttggagtgag gaacatcagc acccctcggg gcaggcacag 420

catcacgcgc ctggaggagc tggaggacgg cgagtcctac ctatgttccc acggcaggaa 480

ggtgcagcct gtagacctgg acaaagcccg tcggcgcccg cggccctggc tcagcagccg 540

ggccattagc gcgcactcac cgccccaccc cgtagccgtc gctgctcccg gcatgccccg 600

ccccccacgg agcctagtgg tcttcaggaa tggcgacccg aagacgaggc gtgcggttct 660

tctgagcagg agggtcaccc agagcttcga ggcatttcta cagcacctga cagaggtcat 720

gcagcgccct gtggtcaagc tgtacgctac ggacggaagg agggttccca gcctccaggc 780

agtgatcctg agctctggag ctgtggtggc ggcaggaagg gagccattta aaccaggaaa 840

ttatgacatc caaaaatact tgcttcctgc tagattacca gggatctctc agcgtgtgta 900

ccccaaggga aatgcaaagt cagaaagcag aaagataagc acacatatgt cttcaagctc 960

aaggtcccag atttattctg tttcttctga gaaaacacat aataatgatt gctacttaga 1020

ctattctttt gttcctgaaa agtacttggc cttagaaaag aatgattctc agaatttacc 1080

aatatatcct tctgaagatg atattgagaa atcaattatt tttaatcaag acggcactat 1140

gacagttgag atgaaagttc gattcagaat aaaagaggaa gaaaccataa aatggacaac 1200

tactgtcagt aaaactggtc cttctaataa tgatgaaaag agtgagatga gttttccagg 1260

aagaacagaa agtcgatcat ctggtttaaa gcttgcagca tgttcattct ctgcagatgt 1320

gtcacctatg gagcgaagca gtaatcaaga gggcagtttg gcagaggaga taaacattca 1380

aatgacagat caagtggctg aaacttgcag ttctgctagt tgggagaatg ctactgtgga 1440

cacagatatc atccagggaa ctcaagacca agcaaagcat cgtttttata ggccccctac 1500

acctggacta agaagagtga gacaaaagaa atctgtgatt ggcagtgtga ccttagtatc 1560

tgaaactgag gttcaagaga aaatgattgg acagttttca tatagtgaag aaagggaaag 1620

tggggaaaac aagtctgagt atcacatgtt tacacattct tgcagtaaaa tgtcatcagt 1680

atctaacaaa ccagtacttg ttcagatcaa taacaatgat caaatggagg agtcatcatt 1740

agaaagaaaa aaggaaaaca gtctgcttaa gtcaagtgca ataagtgctg gtgttataga 1800

aattacaagt cagaagatgt tagagatgtc acataataat ggtttgccat caactatatc 1860

aaataactca attgtggagg aagatgtagt tgattgtgtg gtattggaca acaaaactgg 1920

tatcaagaac ttcaaaactt atggtaacac caatgatagg ttcagtccta tttcagcaga 1980

tgcaacccat ttttcaagta ataactctgg aactgacaaa aatatttctg aggctccagc 2040

ttcagaagca tcctctactg tcactgcaag aattgacaga ctaattaatg aatttgctca 2100

gtgtggttta acaaaacttc caaaaaatga aaagaagatt ttgtcatctg ttgccagcaa 2160

aaagaagaaa aaatctcgac agcaagcaat aaattccagg tatcaagatg gacagcttgc 2220

aaccaaagga attcttaata agaatgagag aataaacaca aaaggtagaa ttacaaagga 2280

aatgatagtg caagattcag atagtcccct taaaggaggg atactttgtg aggaagacct 2340

ccagaaaagt gatactgtaa ttgaatcaaa tactttttgt tccaaaagta atctcaattc 2400

cacgatttcc aagaatttcc atagaaataa attaaatact actcaaaatt ccaaggttca 2460

aggactttta accaaaagaa aatctagatc actaaataaa ataagcttag gagcacctaa 2520

aaaaagagaa atcggtcaaa gagataaagt gtttcctcac aatgaatcta aatattgcaa 2580

aagtactttt gaaaacaaaa gtttatttca tgtatttaac atccttgagc aaaaacccaa 2640

agatttttat gcaccgcaat ctcaagcaga agtggcatct gggtatttga gaggaatggc 2700

aaagaagagt ttagtttcaa aagttactga ttcacacata actttaaaaa gccagaaaaa 2760

acgtaaaggg gataaagtga aagcaagtgc tattttaagt aaacaacatg ctacaaccag 2820

ggcaaattct ttagcttctt tgaaaaaacc tgattttcct gaggctattg ctcatcattc 2880

aattcaaaat tatatacaga gttggttgca gaacataaat ccatatccaa ctttaaagcc 2940

tataaaatca gctccagtat gtagaaatga aacgagtgtg gtaaattgta gcaataatag 3000

tttttcaggg aatgatcccc atacaaattc tggaaaaata agtaattttg ttatggaaag 3060

taataagcac ataactaaaa ttgccggttt gacaggagat aatctatgta aagagggaga 3120

taagtctttt attgccaatg acactggtga agaagatctc catgagacac aggttggatc 3180

tctgaatgat gcttatttgg ttcccctgca tgaacactgt actttgtcac agtcagctat 3240

taatgatcat aatactaaaa gtcatatagc tgctgaaaaa tcaggaccag agaaaaaact 3300

tgtttaccag gaaataaacc tagctagaaa aaggcaaagt gtagaggctg ccattcaagt 3360

agatcctata gaagaggaaa ctccaaaaga cctcttacca gtcctgatgc ttcaccaatt 3420

gcaagcttca gttcctggta ttcacaagac tcagaatgga gttgttcaaa tgccaggttc 3480

acttgcaggt gttccctttc attctgcaat atgtaattca tccactaatc tccttctagc 3540

ttggctcttg gtgctaaacc taaagggaag tatgaatagc ttctgtcaag ttgatgctca 3600

caaggctacc aacaaatctt cagaaacact tgcattgttg gagattctaa agcacatagc 3660

tatcacagag gaagctgatg acttgaaagc tgctgttgcc aatttagtgg agtcaactac 3720

aagccacttt ggactcagtg agaaagaaca agacatggtt ccaatagatc tttctgcaaa 3780

ttgttccacg gtcaacattc agagtgttcc taagtgcagt gaaaatgaaa gaacacaagg 3840

aatctcctct ttggatggag gttgctctgc cagtgaggca tgtgcccctg aagtctgtgt 3900

tttggaagtg acttgctctc catgtgagat gtgcactgta aataaggctt attctccaaa 3960

agagacatgt aaccccagtg acactttttt tcctagtgat ggttatggtg tggatcagac 4020

ttctatgaat aaggcttgtt tcctaggaga ggtctgttca cttactgata ctgtgttttc 4080

tgataaggct tgtgctcaaa aggagaacca tacctatgag ggagcttgcc caattgatga 4140

gacctacgtt cctgtcaatg tctgcaatac cattgacttt ttaaactcca aagaaaacac 4200

atatactgat aacttggatt caactgaaga gttagaaaga ggtgatgaca ttcagaaaga 4260

tctaaatatt ttgacagacc ctgaatataa aaatggattt aatacattgg tgtcacatca 4320

aaatgtcagt aatttaagct cctgtggcct ttgcctaagt gaaaaagaag cagaacttga 4380

taagaaacat agttctctag atgattttga aaattgttca ctaaggaagt ttcaggatga 4440

aaatgcatat acttcctttg atatggaaga accacggact tctgaagaac caggctcaat 4500

aaccaacagc atgacatcaa gtgaaagaaa catttcagaa ttggaatctt ttgaagaatt 4560

agaaaaccat gacactgata tctttaatac agtggtaaat ggaggagagc aagccactga 4620

agaattaatc caagaagagg tagaggctag taaaacttta gaattgatag acatctctag 4680

taagaatatt atggaagaaa aaagaatgaa cggtataatt tatgaaataa tcagtaagag 4740

gctggcaaca ccaccatctt tagatttttg ctatgattct aagcaaaata gtgaaaagga 4800

gaccaatgaa ggagaaacta agatggtaaa aatgatggtg aaaactatgg aaactggaag 4860

ttattcagag tcctctcctg atttaaaaaa atgcatcaaa agtccagtga cttctgattg 4920

gtcagactat cggcctgaca gtgacagtga gcagccatat aaaacatcca gtgatgatcc 4980

caatgacagt ggcgaactta cccaagagaa agaatataac ataggatttg ttaaaagggc 5040

aatagaaaaa ctgtacggta aagcagatat tatcaaacca tctttttttc ctgggtctac 5100

ccgcaaatct caggtttgtc cttataattc tgtggaattt cagtgttcca ggaaagcaag 5160

tctttatgat tctgaagggc agtcatttgg ctcttctgaa caggtatcta gtagttcatc 5220

tatgttgcag gaattccagg aggaaagaca agataagtgt gatgttagtg ctgtgaggga 5280

caattattgt aggggtgaca ttgtagaacc tggtacaaaa caaaatgatg atagcagaat 5340

cctcacagac atagaggaag gagtactgat tgacaaaggc aaatggcttc tgaaagaaaa 5400

tcatttgcta aggatgtcat ctgaaaatcc tggcatgtgt ggcaatgcag acaccacatc 5460

agtggacacc ctacttgata ataacagcag tgaggtacca tattcacatt ttggtaattt 5520

ggccccaggc ccaacgatgg atgaactctc ctcttcagaa ctcgaggaac tgactcaacc 5580

ccttgaacta aaatgcaatt actttaacat gcctcatggt agtgactcag aaccttttca 5640

tgaggacttg ctggatgttc gcaatgaaac ctgtgccaag gaaagaatag caaatcatca 5700

tacagaggag aagggtagtc atcagtcaga aagagtatgc acatctgtca ctcattcctt 5760

tatttctgct ggtaacaaag tctaccctgt ctctgatgat gctattaaaa accaaccatt 5820

gcctggcagt aatatgattc atggtacact tcaggaagct gactctttgg ataaactgta 5880

tgctctttgt ggtcaacatt gcccaatact aactgttatt atccaaccca tgaatgagga 5940

agaccgagga tttgcatatc gcaaagaatc tgatattgaa aatttcttgg gtttttattt 6000

atggatgaaa atacacccat atttacttca gacagacaaa aatgtgttca gggaagagaa 6060

caataaagca agtatgagac aaaatcttat tgataatgcc attggtgata tatttgatca 6120

gttttatttc agtaacacat ttgacttgat gggtaaaaga agaaaacaaa aaagaattaa 6180

cttcttgggg ttagaggaag aaggtaattt aaagaaattt caaccagatt tgaaggaaag 6240

gttttgtatg aatttcttgc acacatcatt gttagttgtg ggtaatgtgg attcaaatac 6300

acaagacctc agcggtcaga caaatgaaat ctttaaagca gtcgatgaga ataacaactt 6360

attaaataac agattccagg gctcaagaac aaatctcaac caagtagtaa gagaaaatat 6420

caactgtcat tacttctttg aaatgcttgg tcaagcttgc ctcttagata tttgccaagt 6480

tgagacctcc ttaaatatta gcaacagaaa tattttagaa ctttgtatgt ttgagggtga 6540

aaatcttttc atttgggaag aggaagacat attaaattta actgatcttg aaagcagtag 6600

agaacaagaa gatttataat ttcaatatca gcacactcat tctttgtcaa ttcatttttt 6660

cccatgagat gaagcacatg tgacgaatac ggactagata acctctaaga attttccact 6720

tcttcaaaat gaacttactc tagaaagctt acccttggat aaccagtttg actttcataa 6780

tgtctctgtt ttttgttttt ccaacaatta cagactcagg ttctcttatt ttggaagttt 6840

ctatctggtt ttgttctgaa cttacatttt tttttttttt ggtatctatg attttttttg 6900

ctcagggcat caaaatgtgc taaggacaag aattatatcc tttttaaaaa atgttgttag 6960

cttggtgtaa aatgtatatt gactgtattg gtgaataaat tgaatagaca taacctcaaa 7020

gtacttcact tattcttttt aactactgat ttgataaaaa gtatgattat aagatatcca 7080

cgacaatctc atagtttctt 7100

<210> SEQ ID NO: 35

<211> LENGTH: 2156

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 35

Met Ser Asp Thr Pro Ser Thr Gly Phe Ser Ile Ile His Pro Thr Ser

1 5 10 15

Ser Glu Gly Gln Val Pro Pro Pro Arg His Leu Ser Leu Thr His Pro

20 25 30

Val Val Ala Lys Arg Ile Ser Phe Tyr Lys Ser Gly Asp Pro Gln Phe

35 40 45

Gly Gly Val Arg Val Val Val Asn Pro Arg Ser Phe Lys Ser Phe Asp

50 55 60

Ala Leu Leu Asp Asn Leu Ser Arg Lys Val Pro Leu Pro Phe Gly Val

65 70 75 80

Arg Asn Ile Ser Thr Pro Arg Gly Arg His Ser Ile Thr Arg Leu Glu

85 90 95

Glu Leu Glu Asp Gly Glu Ser Tyr Leu Cys Ser His Gly Arg Lys Val

100 105 110

Gln Pro Val Asp Leu Asp Lys Ala Arg Arg Arg Pro Arg Pro Trp Leu

115 120 125

Ser Ser Arg Ala Ile Ser Ala His Ser Pro Pro His Pro Val Ala Val

130 135 140

Ala Ala Pro Gly Met Pro Arg Pro Pro Arg Ser Leu Val Val Phe Arg

145 150 155 160

Asn Gly Asp Pro Lys Thr Arg Arg Ala Val Leu Leu Ser Arg Arg Val

165 170 175

Thr Gln Ser Phe Glu Ala Phe Leu Gln His Leu Thr Glu Val Met Gln

180 185 190

Arg Pro Val Val Lys Leu Tyr Ala Thr Asp Gly Arg Arg Val Pro Ser

195 200 205

Leu Gln Ala Val Ile Leu Ser Ser Gly Ala Val Val Ala Ala Gly Arg

210 215 220

Glu Pro Phe Lys Pro Gly Asn Tyr Asp Ile Gln Lys Tyr Leu Leu Pro

225 230 235 240

Ala Arg Leu Pro Gly Ile Ser Gln Arg Val Tyr Pro Lys Gly Asn Ala

245 250 255

Lys Ser Glu Ser Arg Lys Ile Ser Thr His Met Ser Ser Ser Ser Arg

260 265 270

Ser Gln Ile Tyr Ser Val Ser Ser Glu Lys Thr His Asn Asn Asp Cys

275 280 285

Tyr Leu Asp Tyr Ser Phe Val Pro Glu Lys Tyr Leu Ala Leu Glu Lys

290 295 300

Asn Asp Ser Gln Asn Leu Pro Ile Tyr Pro Ser Glu Asp Asp Ile Glu

305 310 315 320

Lys Ser Ile Ile Phe Asn Gln Asp Gly Thr Met Thr Val Glu Met Lys

325 330 335

Val Arg Phe Arg Ile Lys Glu Glu Glu Thr Ile Lys Trp Thr Thr Thr

340 345 350

Val Ser Lys Thr Gly Pro Ser Asn Asn Asp Glu Lys Ser Glu Met Ser

355 360 365

Phe Pro Gly Arg Thr Glu Ser Arg Ser Ser Gly Leu Lys Leu Ala Ala

370 375 380

Cys Ser Phe Ser Ala Asp Val Ser Pro Met Glu Arg Ser Ser Asn Gln

385 390 395 400

Glu Gly Ser Leu Ala Glu Glu Ile Asn Ile Gln Met Thr Asp Gln Val

405 410 415

Ala Glu Thr Cys Ser Ser Ala Ser Trp Glu Asn Ala Thr Val Asp Thr

420 425 430

Asp Ile Ile Gln Gly Thr Gln Asp Gln Ala Lys His Arg Phe Tyr Arg

435 440 445

Pro Pro Thr Pro Gly Leu Arg Arg Val Arg Gln Lys Lys Ser Val Ile

450 455 460

Gly Ser Val Thr Leu Val Ser Glu Thr Glu Val Gln Glu Lys Met Ile

465 470 475 480

Gly Gln Phe Ser Tyr Ser Glu Glu Arg Glu Ser Gly Glu Asn Lys Ser

485 490 495

Glu Tyr His Met Phe Thr His Ser Cys Ser Lys Met Ser Ser Val Ser

500 505 510

Asn Lys Pro Val Leu Val Gln Ile Asn Asn Asn Asp Gln Met Glu Glu

515 520 525

Ser Ser Leu Glu Arg Lys Lys Glu Asn Ser Leu Leu Lys Ser Ser Ala

530 535 540

Ile Ser Ala Gly Val Ile Glu Ile Thr Ser Gln Lys Met Leu Glu Met

545 550 555 560

Ser His Asn Asn Gly Leu Pro Ser Thr Ile Ser Asn Asn Ser Ile Val

565 570 575

Glu Glu Asp Val Val Asp Cys Val Val Leu Asp Asn Lys Thr Gly Ile

580 585 590

Lys Asn Phe Lys Thr Tyr Gly Asn Thr Asn Asp Arg Phe Ser Pro Ile

595 600 605

Ser Ala Asp Ala Thr His Phe Ser Ser Asn Asn Ser Gly Thr Asp Lys

610 615 620

Asn Ile Ser Glu Ala Pro Ala Ser Glu Ala Ser Ser Thr Val Thr Ala

625 630 635 640

Arg Ile Asp Arg Leu Ile Asn Glu Phe Ala Gln Cys Gly Leu Thr Lys

645 650 655

Leu Pro Lys Asn Glu Lys Lys Ile Leu Ser Ser Val Ala Ser Lys Lys

660 665 670

Lys Lys Lys Ser Arg Gln Gln Ala Ile Asn Ser Arg Tyr Gln Asp Gly

675 680 685

Gln Leu Ala Thr Lys Gly Ile Leu Asn Lys Asn Glu Arg Ile Asn Thr

690 695 700

Lys Gly Arg Ile Thr Lys Glu Met Ile Val Gln Asp Ser Asp Ser Pro

705 710 715 720

Leu Lys Gly Gly Ile Leu Cys Glu Glu Asp Leu Gln Lys Ser Asp Thr

725 730 735

Val Ile Glu Ser Asn Thr Phe Cys Ser Lys Ser Asn Leu Asn Ser Thr

740 745 750

Ile Ser Lys Asn Phe His Arg Asn Lys Leu Asn Thr Thr Gln Asn Ser

755 760 765

Lys Val Gln Gly Leu Leu Thr Lys Arg Lys Ser Arg Ser Leu Asn Lys

770 775 780

Ile Ser Leu Gly Ala Pro Lys Lys Arg Glu Ile Gly Gln Arg Asp Lys

785 790 795 800

Val Phe Pro His Asn Glu Ser Lys Tyr Cys Lys Ser Thr Phe Glu Asn

805 810 815

Lys Ser Leu Phe His Val Phe Asn Ile Leu Glu Gln Lys Pro Lys Asp

820 825 830

Phe Tyr Ala Pro Gln Ser Gln Ala Glu Val Ala Ser Gly Tyr Leu Arg

835 840 845

Gly Met Ala Lys Lys Ser Leu Val Ser Lys Val Thr Asp Ser His Ile

850 855 860

Thr Leu Lys Ser Gln Lys Lys Arg Lys Gly Asp Lys Val Lys Ala Ser

865 870 875 880

Ala Ile Leu Ser Lys Gln His Ala Thr Thr Arg Ala Asn Ser Leu Ala

885 890 895

Ser Leu Lys Lys Pro Asp Phe Pro Glu Ala Ile Ala His His Ser Ile

900 905 910

Gln Asn Tyr Ile Gln Ser Trp Leu Gln Asn Ile Asn Pro Tyr Pro Thr

915 920 925

Leu Lys Pro Ile Lys Ser Ala Pro Val Cys Arg Asn Glu Thr Ser Val

930 935 940

Val Asn Cys Ser Asn Asn Ser Phe Ser Gly Asn Asp Pro His Thr Asn

945 950 955 960

Ser Gly Lys Ile Ser Asn Phe Val Met Glu Ser Asn Lys His Ile Thr

965 970 975

Lys Ile Ala Gly Leu Thr Gly Asp Asn Leu Cys Lys Glu Gly Asp Lys

980 985 990

Ser Phe Ile Ala Asn Asp Thr Gly Glu Glu Asp Leu His Glu Thr Gln

995 1000 1005

Val Gly Ser Leu Asn Asp Ala Tyr Leu Val Pro Leu His Glu His

1010 1015 1020

Cys Thr Leu Ser Gln Ser Ala Ile Asn Asp His Asn Thr Lys Ser

1025 1030 1035

His Ile Ala Ala Glu Lys Ser Gly Pro Glu Lys Lys Leu Val Tyr

1040 1045 1050

Gln Glu Ile Asn Leu Ala Arg Lys Arg Gln Ser Val Glu Ala Ala

1055 1060 1065

Ile Gln Val Asp Pro Ile Glu Glu Glu Thr Pro Lys Asp Leu Leu

1070 1075 1080

Pro Val Leu Met Leu His Gln Leu Gln Ala Ser Val Pro Gly Ile

1085 1090 1095

His Lys Thr Gln Asn Gly Val Val Gln Met Pro Gly Ser Leu Ala

1100 1105 1110

Gly Val Pro Phe His Ser Ala Ile Cys Asn Ser Ser Thr Asn Leu

1115 1120 1125

Leu Leu Ala Trp Leu Leu Val Leu Asn Leu Lys Gly Ser Met Asn

1130 1135 1140

Ser Phe Cys Gln Val Asp Ala His Lys Ala Thr Asn Lys Ser Ser

1145 1150 1155

Glu Thr Leu Ala Leu Leu Glu Ile Leu Lys His Ile Ala Ile Thr

1160 1165 1170

Glu Glu Ala Asp Asp Leu Lys Ala Ala Val Ala Asn Leu Val Glu

1175 1180 1185

Ser Thr Thr Ser His Phe Gly Leu Ser Glu Lys Glu Gln Asp Met

1190 1195 1200

Val Pro Ile Asp Leu Ser Ala Asn Cys Ser Thr Val Asn Ile Gln

1205 1210 1215

Ser Val Pro Lys Cys Ser Glu Asn Glu Arg Thr Gln Gly Ile Ser

1220 1225 1230

Ser Leu Asp Gly Gly Cys Ser Ala Ser Glu Ala Cys Ala Pro Glu

1235 1240 1245

Val Cys Val Leu Glu Val Thr Cys Ser Pro Cys Glu Met Cys Thr

1250 1255 1260

Val Asn Lys Ala Tyr Ser Pro Lys Glu Thr Cys Asn Pro Ser Asp

1265 1270 1275

Thr Phe Phe Pro Ser Asp Gly Tyr Gly Val Asp Gln Thr Ser Met

1280 1285 1290

Asn Lys Ala Cys Phe Leu Gly Glu Val Cys Ser Leu Thr Asp Thr

1295 1300 1305

Val Phe Ser Asp Lys Ala Cys Ala Gln Lys Glu Asn His Thr Tyr

1310 1315 1320

Glu Gly Ala Cys Pro Ile Asp Glu Thr Tyr Val Pro Val Asn Val

1325 1330 1335

Cys Asn Thr Ile Asp Phe Leu Asn Ser Lys Glu Asn Thr Tyr Thr

1340 1345 1350

Asp Asn Leu Asp Ser Thr Glu Glu Leu Glu Arg Gly Asp Asp Ile

1355 1360 1365

Gln Lys Asp Leu Asn Ile Leu Thr Asp Pro Glu Tyr Lys Asn Gly

1370 1375 1380

Phe Asn Thr Leu Val Ser His Gln Asn Val Ser Asn Leu Ser Ser

1385 1390 1395

Cys Gly Leu Cys Leu Ser Glu Lys Glu Ala Glu Leu Asp Lys Lys

1400 1405 1410

His Ser Ser Leu Asp Asp Phe Glu Asn Cys Ser Leu Arg Lys Phe

1415 1420 1425

Gln Asp Glu Asn Ala Tyr Thr Ser Phe Asp Met Glu Glu Pro Arg

1430 1435 1440

Thr Ser Glu Glu Pro Gly Ser Ile Thr Asn Ser Met Thr Ser Ser

1445 1450 1455

Glu Arg Asn Ile Ser Glu Leu Glu Ser Phe Glu Glu Leu Glu Asn

1460 1465 1470

His Asp Thr Asp Ile Phe Asn Thr Val Val Asn Gly Gly Glu Gln

1475 1480 1485

Ala Thr Glu Glu Leu Ile Gln Glu Glu Val Glu Ala Ser Lys Thr

1490 1495 1500

Leu Glu Leu Ile Asp Ile Ser Ser Lys Asn Ile Met Glu Glu Lys

1505 1510 1515

Arg Met Asn Gly Ile Ile Tyr Glu Ile Ile Ser Lys Arg Leu Ala

1520 1525 1530

Thr Pro Pro Ser Leu Asp Phe Cys Tyr Asp Ser Lys Gln Asn Ser

1535 1540 1545

Glu Lys Glu Thr Asn Glu Gly Glu Thr Lys Met Val Lys Met Met

1550 1555 1560

Val Lys Thr Met Glu Thr Gly Ser Tyr Ser Glu Ser Ser Pro Asp

1565 1570 1575

Leu Lys Lys Cys Ile Lys Ser Pro Val Thr Ser Asp Trp Ser Asp

1580 1585 1590

Tyr Arg Pro Asp Ser Asp Ser Glu Gln Pro Tyr Lys Thr Ser Ser

1595 1600 1605

Asp Asp Pro Asn Asp Ser Gly Glu Leu Thr Gln Glu Lys Glu Tyr

1610 1615 1620

Asn Ile Gly Phe Val Lys Arg Ala Ile Glu Lys Leu Tyr Gly Lys

1625 1630 1635

Ala Asp Ile Ile Lys Pro Ser Phe Phe Pro Gly Ser Thr Arg Lys

1640 1645 1650

Ser Gln Val Cys Pro Tyr Asn Ser Val Glu Phe Gln Cys Ser Arg

1655 1660 1665

Lys Ala Ser Leu Tyr Asp Ser Glu Gly Gln Ser Phe Gly Ser Ser

1670 1675 1680

Glu Gln Val Ser Ser Ser Ser Ser Met Leu Gln Glu Phe Gln Glu

1685 1690 1695

Glu Arg Gln Asp Lys Cys Asp Val Ser Ala Val Arg Asp Asn Tyr

1700 1705 1710

Cys Arg Gly Asp Ile Val Glu Pro Gly Thr Lys Gln Asn Asp Asp

1715 1720 1725

Ser Arg Ile Leu Thr Asp Ile Glu Glu Gly Val Leu Ile Asp Lys

1730 1735 1740

Gly Lys Trp Leu Leu Lys Glu Asn His Leu Leu Arg Met Ser Ser

1745 1750 1755

Glu Asn Pro Gly Met Cys Gly Asn Ala Asp Thr Thr Ser Val Asp

1760 1765 1770

Thr Leu Leu Asp Asn Asn Ser Ser Glu Val Pro Tyr Ser His Phe

1775 1780 1785

Gly Asn Leu Ala Pro Gly Pro Thr Met Asp Glu Leu Ser Ser Ser

1790 1795 1800

Glu Leu Glu Glu Leu Thr Gln Pro Leu Glu Leu Lys Cys Asn Tyr

1805 1810 1815

Phe Asn Met Pro His Gly Ser Asp Ser Glu Pro Phe His Glu Asp

1820 1825 1830

Leu Leu Asp Val Arg Asn Glu Thr Cys Ala Lys Glu Arg Ile Ala

1835 1840 1845

Asn His His Thr Glu Glu Lys Gly Ser His Gln Ser Glu Arg Val

1850 1855 1860

Cys Thr Ser Val Thr His Ser Phe Ile Ser Ala Gly Asn Lys Val

1865 1870 1875

Tyr Pro Val Ser Asp Asp Ala Ile Lys Asn Gln Pro Leu Pro Gly

1880 1885 1890

Ser Asn Met Ile His Gly Thr Leu Gln Glu Ala Asp Ser Leu Asp

1895 1900 1905

Lys Leu Tyr Ala Leu Cys Gly Gln His Cys Pro Ile Leu Thr Val

1910 1915 1920

Ile Ile Gln Pro Met Asn Glu Glu Asp Arg Gly Phe Ala Tyr Arg

1925 1930 1935

Lys Glu Ser Asp Ile Glu Asn Phe Leu Gly Phe Tyr Leu Trp Met

1940 1945 1950

Lys Ile His Pro Tyr Leu Leu Gln Thr Asp Lys Asn Val Phe Arg

1955 1960 1965

Glu Glu Asn Asn Lys Ala Ser Met Arg Gln Asn Leu Ile Asp Asn

1970 1975 1980

Ala Ile Gly Asp Ile Phe Asp Gln Phe Tyr Phe Ser Asn Thr Phe

1985 1990 1995

Asp Leu Met Gly Lys Arg Arg Lys Gln Lys Arg Ile Asn Phe Leu

2000 2005 2010

Gly Leu Glu Glu Glu Gly Asn Leu Lys Lys Phe Gln Pro Asp Leu

2015 2020 2025

Lys Glu Arg Phe Cys Met Asn Phe Leu His Thr Ser Leu Leu Val

2030 2035 2040

Val Gly Asn Val Asp Ser Asn Thr Gln Asp Leu Ser Gly Gln Thr

2045 2050 2055

Asn Glu Ile Phe Lys Ala Val Asp Glu Asn Asn Asn Leu Leu Asn

2060 2065 2070

Asn Arg Phe Gln Gly Ser Arg Thr Asn Leu Asn Gln Val Val Arg

2075 2080 2085

Glu Asn Ile Asn Cys His Tyr Phe Phe Glu Met Leu Gly Gln Ala

2090 2095 2100

Cys Leu Leu Asp Ile Cys Gln Val Glu Thr Ser Leu Asn Ile Ser

2105 2110 2115

Asn Arg Asn Ile Leu Glu Leu Cys Met Phe Glu Gly Glu Asn Leu

2120 2125 2130

Phe Ile Trp Glu Glu Glu Asp Ile Leu Asn Leu Thr Asp Leu Glu

2135 2140 2145

Ser Ser Arg Glu Gln Glu Asp Leu

2150 2155

<210> SEQ ID NO: 36

<211> LENGTH: 3950

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 36

atgtcacatc tggtggaccc tacatcagga gacttgccag ttagagacat agatgctata 60

cctctggtgc taccagcctc aaaaggtaag aatatgaaaa ctcaaccacc cttgagcagg 120

atgaaccggg aggaattgga ggacagtttc tttcgacttc gcgaagatca catgttggtg 180

aaggagcttt cttggaagca acaggatgag atcaaaaggc tgaggaccac cttgctgcgg 240

ttgaccgctg ctggccggga cctgcgggtc gcggaggagg cggcgccgct ctcggagacc 300

gcaaggcgcg ggcagaaggc gggatggcgg cagcgcctct ccatgcacca gcgcccccag 360

atgcaccgac tgcaagggca tttccactgc gtcggccctg ccagcccccg ccgcgcccag 420

cctcgcgtcc aagtgggaca cagacagctc cacacagccg gtgcaccggt gccggagaaa 480

cccaagaggg ggccaaggga caggctgagc tacacagccc ctccatcgtt taaggagcat 540

gcgacaaatg aaaacagagg tgaagtagcc agtaaaccca gtgaacttgt ttctggttct 600

aacagcataa tttctttcag cagtgtcata agtatggcta aacccattgg tctatgcatg 660

cctaacagtg cccacatcat ggccagcaat accatgcaag tggaagagcc acccaagtct 720

cctgagaaaa tgtggcctaa agatgaaaat tttgaacaga gaagctcatt ggagtgtgct 780

cagaaggctg cagagcttcg agcttccatt aaagagaagg tagagctgat tcgacttaag 840

aagctcttac atgaaagaaa tgcttcattg gttatgacaa aagcacaatt aacagaagtt 900

caagaggcat acgaaacctt gctccagaag aatcagggaa tcctgagtgc agcccatgag 960

gccctcctca agcaagtgaa tgagctcagg gcagagctga aggaagaaag caagaaggct 1020

gtgagcttga agagccaact ggaagatgtg tctatcttgc agatgactct gaaggagttt 1080

caggagagag ttgaagattt ggaaaaagaa cgaaaattgc tgaatgacaa ttatgacaaa 1140

ctcttagaaa gcatgctgga cagcagtgac agctccagtc agccccactg gagcaacgag 1200

ctcatagcgg aacagctaca gcagcaagtc tctcagctgc aggatcagct ggatgctgag 1260

ctggaggaca agagaaaagt tttacttgag ctgtccaggg agaaagccca aaatgaggat 1320

ctgaagcttg aagtcaccaa catacttcag aagcataaac aggaagtaga gctcctccaa 1380

aatgcagcca caatttccca acctcctgac aggcaatctg aaccagccac tcacccagct 1440

gtattgcaag agaacactca gatcgagcca agtgaaccca aaaaccaaga agaaaagaaa 1500

ctgtcccagg tgctaaatga gttgcaagta tcacacgcag agaccacatt ggaactagaa 1560

aagaccaggg acatgcttat tctgcagcgc aaaatcaacg tgtgttatca ggaggaactg 1620

gaggcaatga tgacaaaagc tgacaatgat aatagagatc acaaagaaaa gctggagagg 1680

ttgactcgac tactagacct caagaataac cgtatcaagc agctggaagg tattttaaga 1740

agccatgacc ttccaacatc tgaacagctc aaagatgttg cttatggcac ccgaccgttg 1800

tcgttatgtt tggaaacact gccagcccat ggagatgagg ataaagtgga tatttctctg 1860

ctgcatcagg gtgagaatct ttttgaactg cacatccacc aggccttcct gacatctgcc 1920

gccctagctc aggctggaga tacccaacct accactttct gcacctattc cttctatgac 1980

tttgaaaccc actgtacccc attatctgtg gggccacagc ccctctatga cttcacctcc 2040

cagtatgtga tggagacaga ttcgcttttc ttacactacc ttcaagaggc ttcagcccgg 2100

cttgacatac accaggccat ggccagtgaa cacagcactc ttgctgcagg atggatttgc 2160

tttgacaggg tgctagagac tgtggagaaa gtccatggct tggccacact gattggagct 2220

ggtggagaag agttcggggt tctagagtac tggatgaggc tgcgtttccc cataaaaccc 2280

agcctacagg cgtgcaataa acgaaagaaa gcccaggtct acctgtcaac cgatgtgctt 2340

ggaggccgga aggcccagga agaggagttc agatcggagt cttgggaacc tcagaacgag 2400

ctgtggattg aaatcaccaa gtgctgtggc ctccggagtc gatggctggg aactcaaccc 2460

agtccatatg ctgtgtaccg cttcttcacc ttttctgacc atgacactgc catcattcca 2520

gccagtaaca acccctactt tagagaccag gctcgattcc cagtgcttgt gacctctgac 2580

ctggaccatt atctgagacg ggaggccttg tctatacatg tttttgatga tgaagactta 2640

gagcctggct cgtatcttgg ccgagcccga gtgcctttac tgcctcttgc aaaaaatgaa 2700

tctatcaaag gtgattttaa cctcactgac cctgcagaga aacccaacgg atctattcaa 2760

gtgcaactgg attggaagtt tccctacata ccccctgaga gcttcctgaa accagaagct 2820

cagactaagg ggaaggatac caaggacagt tcaaagatct catctgaaga ggaaaaggct 2880

tcatttcctt cccaggatca gatggcatct cctgaggttc ccattgaagc tggccagtat 2940

cgatctaaga gaaaacctcc tcatggggga gaaagaaagg agaaggagca ccaggttgtg 3000

agctactcaa gaagaaaaca tggcaaaaga ataggtgttc aaggaaagaa tagaatggag 3060

tatcttagcc ttaacatctt aaatggaaat acaccagagc aggtgaatta cactgagtgg 3120

aagttctcag agactaacag cttcataggt gatggcttta aaaatcagca cgaggaagag 3180

gaaatgacat tatcccattc agcactgaaa cagaaggaac ctctacatcc tgtaaatgac 3240

aaagaatcct ctgaacaagg ttctgaagtc agtgaagcac aaactaccga cagtgatgat 3300

gtcatagtgc cacccatgtc tcagaaatat cctaaggcag attcagagaa gatgtgcatt 3360

gaaattgtct ccctggcctt ctacccagag gcagaagtga tgtctgatga gaacataaaa 3420

caggtgtatg tggagtacaa attctacgac ctacccttgt cggagacaga gactccagtg 3480

tccctaagga agcctagggc aggagaagaa atccactttc actttagcaa ggtaatagac 3540

ctggacccac aggagcagca aggccgaagg cggtttctgt tcgacatgct gaatggacaa 3600

gatcctgatc aaggacattt aaagtttaca gtggtaagtg atcctctgga tgaagaaaag 3660

aaagaatgtg aagaagtggg atatgcatat cttcaactgt ggcagatcct ggagtcagga 3720

agagatattc tagagcaaga gctagacatt gttagccctg aagatctggc taccccaata 3780

ggaaggctga aggtttccct tcaagcagct gctgtcctcc atgctattta caaggagatg 3840

actgaagatt tgttttcatg aaggaacaag tgctattcca atctaaaagt ctctgaggga 3900

accatagtaa aaagtctctt ataaagttag cttgctataa catgaaaaaa 3950

<210> SEQ ID NO: 37

<211> LENGTH: 1286

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 37

Met Ser His Leu Val Asp Pro Thr Ser Gly Asp Leu Pro Val Arg Asp

1 5 10 15

Ile Asp Ala Ile Pro Leu Val Leu Pro Ala Ser Lys Gly Lys Asn Met

20 25 30

Lys Thr Gln Pro Pro Leu Ser Arg Met Asn Arg Glu Glu Leu Glu Asp

35 40 45

Ser Phe Phe Arg Leu Arg Glu Asp His Met Leu Val Lys Glu Leu Ser

50 55 60

Trp Lys Gln Gln Asp Glu Ile Lys Arg Leu Arg Thr Thr Leu Leu Arg

65 70 75 80

Leu Thr Ala Ala Gly Arg Asp Leu Arg Val Ala Glu Glu Ala Ala Pro

85 90 95

Leu Ser Glu Thr Ala Arg Arg Gly Gln Lys Ala Gly Trp Arg Gln Arg

100 105 110

Leu Ser Met His Gln Arg Pro Gln Met His Arg Leu Gln Gly His Phe

115 120 125

His Cys Val Gly Pro Ala Ser Pro Arg Arg Ala Gln Pro Arg Val Gln

130 135 140

Val Gly His Arg Gln Leu His Thr Ala Gly Ala Pro Val Pro Glu Lys

145 150 155 160

Pro Lys Arg Gly Pro Arg Asp Arg Leu Ser Tyr Thr Ala Pro Pro Ser

165 170 175

Phe Lys Glu His Ala Thr Asn Glu Asn Arg Gly Glu Val Ala Ser Lys

180 185 190

Pro Ser Glu Leu Val Ser Gly Ser Asn Ser Ile Ile Ser Phe Ser Ser

195 200 205

Val Ile Ser Met Ala Lys Pro Ile Gly Leu Cys Met Pro Asn Ser Ala

210 215 220

His Ile Met Ala Ser Asn Thr Met Gln Val Glu Glu Pro Pro Lys Ser

225 230 235 240

Pro Glu Lys Met Trp Pro Lys Asp Glu Asn Phe Glu Gln Arg Ser Ser

245 250 255

Leu Glu Cys Ala Gln Lys Ala Ala Glu Leu Arg Ala Ser Ile Lys Glu

260 265 270

Lys Val Glu Leu Ile Arg Leu Lys Lys Leu Leu His Glu Arg Asn Ala

275 280 285

Ser Leu Val Met Thr Lys Ala Gln Leu Thr Glu Val Gln Glu Ala Tyr

290 295 300

Glu Thr Leu Leu Gln Lys Asn Gln Gly Ile Leu Ser Ala Ala His Glu

305 310 315 320

Ala Leu Leu Lys Gln Val Asn Glu Leu Arg Ala Glu Leu Lys Glu Glu

325 330 335

Ser Lys Lys Ala Val Ser Leu Lys Ser Gln Leu Glu Asp Val Ser Ile

340 345 350

Leu Gln Met Thr Leu Lys Glu Phe Gln Glu Arg Val Glu Asp Leu Glu

355 360 365

Lys Glu Arg Lys Leu Leu Asn Asp Asn Tyr Asp Lys Leu Leu Glu Ser

370 375 380

Met Leu Asp Ser Ser Asp Ser Ser Ser Gln Pro His Trp Ser Asn Glu

385 390 395 400

Leu Ile Ala Glu Gln Leu Gln Gln Gln Val Ser Gln Leu Gln Asp Gln

405 410 415

Leu Asp Ala Glu Leu Glu Asp Lys Arg Lys Val Leu Leu Glu Leu Ser

420 425 430

Arg Glu Lys Ala Gln Asn Glu Asp Leu Lys Leu Glu Val Thr Asn Ile

435 440 445

Leu Gln Lys His Lys Gln Glu Val Glu Leu Leu Gln Asn Ala Ala Thr

450 455 460

Ile Ser Gln Pro Pro Asp Arg Gln Ser Glu Pro Ala Thr His Pro Ala

465 470 475 480

Val Leu Gln Glu Asn Thr Gln Ile Glu Pro Ser Glu Pro Lys Asn Gln

485 490 495

Glu Glu Lys Lys Leu Ser Gln Val Leu Asn Glu Leu Gln Val Ser His

500 505 510

Ala Glu Thr Thr Leu Glu Leu Glu Lys Thr Arg Asp Met Leu Ile Leu

515 520 525

Gln Arg Lys Ile Asn Val Cys Tyr Gln Glu Glu Leu Glu Ala Met Met

530 535 540

Thr Lys Ala Asp Asn Asp Asn Arg Asp His Lys Glu Lys Leu Glu Arg

545 550 555 560

Leu Thr Arg Leu Leu Asp Leu Lys Asn Asn Arg Ile Lys Gln Leu Glu

565 570 575

Gly Ile Leu Arg Ser His Asp Leu Pro Thr Ser Glu Gln Leu Lys Asp

580 585 590

Val Ala Tyr Gly Thr Arg Pro Leu Ser Leu Cys Leu Glu Thr Leu Pro

595 600 605

Ala His Gly Asp Glu Asp Lys Val Asp Ile Ser Leu Leu His Gln Gly

610 615 620

Glu Asn Leu Phe Glu Leu His Ile His Gln Ala Phe Leu Thr Ser Ala

625 630 635 640

Ala Leu Ala Gln Ala Gly Asp Thr Gln Pro Thr Thr Phe Cys Thr Tyr

645 650 655

Ser Phe Tyr Asp Phe Glu Thr His Cys Thr Pro Leu Ser Val Gly Pro

660 665 670

Gln Pro Leu Tyr Asp Phe Thr Ser Gln Tyr Val Met Glu Thr Asp Ser

675 680 685

Leu Phe Leu His Tyr Leu Gln Glu Ala Ser Ala Arg Leu Asp Ile His

690 695 700

Gln Ala Met Ala Ser Glu His Ser Thr Leu Ala Ala Gly Trp Ile Cys

705 710 715 720

Phe Asp Arg Val Leu Glu Thr Val Glu Lys Val His Gly Leu Ala Thr

725 730 735

Leu Ile Gly Ala Gly Gly Glu Glu Phe Gly Val Leu Glu Tyr Trp Met

740 745 750

Arg Leu Arg Phe Pro Ile Lys Pro Ser Leu Gln Ala Cys Asn Lys Arg

755 760 765

Lys Lys Ala Gln Val Tyr Leu Ser Thr Asp Val Leu Gly Gly Arg Lys

770 775 780

Ala Gln Glu Glu Glu Phe Arg Ser Glu Ser Trp Glu Pro Gln Asn Glu

785 790 795 800

Leu Trp Ile Glu Ile Thr Lys Cys Cys Gly Leu Arg Ser Arg Trp Leu

805 810 815

Gly Thr Gln Pro Ser Pro Tyr Ala Val Tyr Arg Phe Phe Thr Phe Ser

820 825 830

Asp His Asp Thr Ala Ile Ile Pro Ala Ser Asn Asn Pro Tyr Phe Arg

835 840 845

Asp Gln Ala Arg Phe Pro Val Leu Val Thr Ser Asp Leu Asp His Tyr

850 855 860

Leu Arg Arg Glu Ala Leu Ser Ile His Val Phe Asp Asp Glu Asp Leu

865 870 875 880

Glu Pro Gly Ser Tyr Leu Gly Arg Ala Arg Val Pro Leu Leu Pro Leu

885 890 895

Ala Lys Asn Glu Ser Ile Lys Gly Asp Phe Asn Leu Thr Asp Pro Ala

900 905 910

Glu Lys Pro Asn Gly Ser Ile Gln Val Gln Leu Asp Trp Lys Phe Pro

915 920 925

Tyr Ile Pro Pro Glu Ser Phe Leu Lys Pro Glu Ala Gln Thr Lys Gly

930 935 940

Lys Asp Thr Lys Asp Ser Ser Lys Ile Ser Ser Glu Glu Glu Lys Ala

945 950 955 960

Ser Phe Pro Ser Gln Asp Gln Met Ala Ser Pro Glu Val Pro Ile Glu

965 970 975

Ala Gly Gln Tyr Arg Ser Lys Arg Lys Pro Pro His Gly Gly Glu Arg

980 985 990

Lys Glu Lys Glu His Gln Val Val Ser Tyr Ser Arg Arg Lys His Gly

995 1000 1005

Lys Arg Ile Gly Val Gln Gly Lys Asn Arg Met Glu Tyr Leu Ser

1010 1015 1020

Leu Asn Ile Leu Asn Gly Asn Thr Pro Glu Gln Val Asn Tyr Thr

1025 1030 1035

Glu Trp Lys Phe Ser Glu Thr Asn Ser Phe Ile Gly Asp Gly Phe

1040 1045 1050

Lys Asn Gln His Glu Glu Glu Glu Met Thr Leu Ser His Ser Ala

1055 1060 1065

Leu Lys Gln Lys Glu Pro Leu His Pro Val Asn Asp Lys Glu Ser

1070 1075 1080

Ser Glu Gln Gly Ser Glu Val Ser Glu Ala Gln Thr Thr Asp Ser

1085 1090 1095

Asp Asp Val Ile Val Pro Pro Met Ser Gln Lys Tyr Pro Lys Ala

1100 1105 1110

Asp Ser Glu Lys Met Cys Ile Glu Ile Val Ser Leu Ala Phe Tyr

1115 1120 1125

Pro Glu Ala Glu Val Met Ser Asp Glu Asn Ile Lys Gln Val Tyr

1130 1135 1140

Val Glu Tyr Lys Phe Tyr Asp Leu Pro Leu Ser Glu Thr Glu Thr

1145 1150 1155

Pro Val Ser Leu Arg Lys Pro Arg Ala Gly Glu Glu Ile His Phe

1160 1165 1170

His Phe Ser Lys Val Ile Asp Leu Asp Pro Gln Glu Gln Gln Gly

1175 1180 1185

Arg Arg Arg Phe Leu Phe Asp Met Leu Asn Gly Gln Asp Pro Asp

1190 1195 1200

Gln Gly His Leu Lys Phe Thr Val Val Ser Asp Pro Leu Asp Glu

1205 1210 1215

Glu Lys Lys Glu Cys Glu Glu Val Gly Tyr Ala Tyr Leu Gln Leu

1220 1225 1230

Trp Gln Ile Leu Glu Ser Gly Arg Asp Ile Leu Glu Gln Glu Leu

1235 1240 1245

Asp Ile Val Ser Pro Glu Asp Leu Ala Thr Pro Ile Gly Arg Leu

1250 1255 1260

Lys Val Ser Leu Gln Ala Ala Ala Val Leu His Ala Ile Tyr Lys

1265 1270 1275

Glu Met Thr Glu Asp Leu Phe Ser

1280 1285

<210> SEQ ID NO: 38

<211> LENGTH: 7221

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 38

cgggcggcct cttgtgtgag ggcctgtggg attctccgga tatggccgga gtgtttcctt 60

atcgagggcc gggtaacccg gtgcctggcc ctctagcccc gctaccggac tacatgtcgg 120

aggagaagct gcaggagaaa gctcgaaaat ggcagcaatt gcaggccaag cgctatgcag 180

aaaagcggaa gtttgggttt gtggatgccc agaaggaaga catgccccca gaacatgtca 240

gggagatcat tcgagaccat ggagacatga ccaacaggaa gttccgccat gacaaaaggg 300

tttacttggg tgccctaaag tacatgcccc acgcagtcct caaactcctg gagaacatgc 360

ctatgccttg ggagcagatt cgggatgtgc ccgtgctgta ccacatcact ggagccattt 420

ccttcgtcaa tgagattccc tgggtcattg aacctgtcta catctcccag tgggggtcaa 480

tgtggattat gatgcgccga gaaaaaagag ataggaggca tttcaagaga atgcgttttc 540

ccccttttga tgatgaggag ccgcccttgg actatgctga caacatccta aatgttgagc 600

cactggaggc cattcagcta gagctggacc ctgaggagga cgcccctgtg ttggactggt 660

tctatgacca ccagccgttg agggacagca ggaagtatgt aaatggctcc acttaccagc 720

gctggcagtt cacactacct atgatgtcaa ctctctaccg cctggctaat cagctcctga 780

cagacttggt ggatgacaac tacttctacc tgtttgattt gaaggccttc tttacgtcca 840

aggcactcaa tatggccatt cctggaggcc ccaaatttga acctcttgtt cgagacatca 900

acctacagga tgaagactgg aatgaattca atgatattaa caagattatc atccggcagc 960

ctatccggac tgagtacaag attgcttttc cttacttgta caacaatctt ccacaccatg 1020

tccacctcac ctggtaccat actcccaatg ttgtattcat caaaactgaa gatcctgact 1080

tgccagcttt ctactttgac cctttgatca acccaatctc ccataggcac tcagtcaaga 1140

gccaggaacc attgccggat gatgatgagg aatttgagct cccggagttt gtggagccct 1200

tcctgaagga cacacccctc tatacagaca atacagccaa tggcattgcc ctgctctggg 1260

ccccgcggcc cttcaaccta cgctctggtc gcacccgtcg ggccctggac ataccccttg 1320

tcaagaactg gtatcgggag cattgtcctg ccgggcagcc tgtgaaagtg agggtctcct 1380

accagaagct gcttaagtac tatgtgctga atgccctgaa gcatcggccc cctaaggctc 1440

aaaagaagag gtatttgttc cgctccttca aagccaccaa attctttcag tccacaaagc 1500

tggactgggt ggagggttgg ctccaggttt gccgccaggg ctacaacatg ctcaaccttc 1560

tcattcaccg caaaaacctc aactacctgc acctggacta caacttcaac ctcaagcctg 1620

tgaaaacgct caccaccaag gaaagaaaga aatctcgttt tgggaatgct ttccacctgt 1680

gtcgggaagt tctgcgtttg actaagctgg tggtggatag tcacgtgcag tatcggctgg 1740

gcaatgtgga tgccttccag ctggcagatg gattgcagta tatatttgcc catgttgggc 1800

agttgacggg catgtatcga tacaaataca agctgatgcg acagattcgc gtgtgcaagg 1860

acctgaagca tctcatctat tatcgtttca acacaggccc tgtagggaag ggtcctggct 1920

gtggcttctg ggctgccggt tggcgagtct ggctcttttt catgcgtggc attacccctt 1980

tattagagcg atggcttggc aacctcctgg cccggcagtt tgaaggtcga cactcaaagg 2040

gggtggcaaa gacagtaaca aagcagcgag tggagtcaca ttttgacctt gagctgcggg 2100

cagctgtgat gcatgatatt ctggacatga tgcctgaggg gatcaagcag aacaaggccc 2160

ggacaatcct gcagcacctc agtgaagcct ggcgctgctg gaaagccaac attccctgga 2220

aggtccctgg gctgccgacg cccatagaga atatgatcct tcgatacgtg aaggccaagg 2280

ctgactggtg gaccaacact gcccactaca accgagaacg gatccgccga ggggccactg 2340

tggacaagac tgtttgtaaa aagaatctgg gccgcctcac ccggctctat ctgaaggcag 2400

aacaggagcg gcagcacaac tacctgaagg acgggcctta catcacagcg gaggaaacag 2460

tggcagtata taccaccaca gtgcattggt tggaaagccg caggttttca cccatcccat 2520

tccccccact ctcctataag catgacacca agttgctcat cttggcattg gagcggctca 2580

aggaagctta tagtgtgaag tctcggttga accagtctca gagggaggag ctaggtctga 2640

tcgagcaggc ctacgataac ctccacgagg cgctgtcccg cataaagcgt cacctcctca 2700

cacagagagc cttcaaagag gtgggcattg agttcatgga tctgtatagc cacctcgttc 2760

cagtatatga tgttgagccc ctggagaaga taactgatgc ttacctggac cagtacctgt 2820

ggtatgaagc cgacaagcgc cgcctgttcc caccctggat taagcctgca gacacagaac 2880

cacctccact gcttgtttac aagtggtgtc aaggcatcaa taacctgcag gacgtgtggg 2940

agacgagtga aggcgagtgc aatgtcatgc tggaatcccg ctttgagaag atgtatgaga 3000

agatcgactt gactctgctc aacaggctcg tgcgcctcat cgtggaccac aacatagccg 3060

actacatgac agccaagaac aacgtcgtca tcaactataa ggacatgaac catacgaatt 3120

catatgggat catcagaggc ctgcagtttg cctcattcat agtgcagtat tatggcctgg 3180

tgatggattt gcttgtattg ggattgcacc gggccagtga gatggctggg ccccctcaga 3240

tgccaaatga ctttctcagt ttccaggaca tagccactga ggctgcccac cccatccgtc 3300

tcttctgcag atacattgat cgcatccata tttttttcag gttcacagca gatgaggctc 3360

gggacctgat tcaacgttac ctgacagagc accctgaccc caataatgaa aacatcgttg 3420

gctataataa caagaagtgc tggccccgag atgcccgcat gcgcctcatg aaacatgatg 3480

ttaacttagg ccgggcggta ttctgggaca tcaagaaccg cttgccacgg tcagtgacta 3540

cagttcagtg ggagaacagc ttcgtgtctg tgtacagtaa ggacaacccc aacctgctgt 3600

tcaacatgtg tggcttcgag tgccgcatcc tgcctaagtg ccgcaccagc tatgaggagt 3660

tcacccacaa ggacggggtc tggaacctgc agaatgaggt tactaaggag cgcacagctc 3720

agtgtttcct gcgtgtggac gatgagtcaa tgcagcgctt ccacaaccgc gtgcgtcaga 3780

ttctcatggc ctctgggtcc accaccttca ccaagattgt gaataagtgg aatacagctc 3840

tcattggcct tatgacatac tttcgggagg ctgtggtgaa cacccaagag ctcttggact 3900

tactggtgaa gtgtgagcac aaaatccaga cacgtatcaa gattggactc aactccaaga 3960

tgccaagtcg gttccccccg gttgtgttct acacccctaa ggagttgggt ggactcggca 4020

tgctctcaat gggccatgtg ctcatccccc aatccgacct caggtggtcc aaacagacag 4080

atgtaggtat cacacacttt cgttcaggaa tgagccatga agaagaccag ctcattccca 4140

acttgtaccg ctacatacag ccatgggaga gcgagttcat tgattctcag cgggtctggg 4200

ctgagtactc actcaagaga caagaggcca ttgctcagaa cagacgcctg actttagaag 4260

acctagaaga ttcatgggat cgtggcattc ctcgaatcaa taccctcttc cagaaggacc 4320

ggcacacact ggcttatgat aagggctggc gtgtcagaac tgactttaag cagtatcagg 4380

ttttgaagca gaatccgttc tggtggacac accagcggca tgatgggaag ctctggaacc 4440

tgaacaacta ccgtacagac atgatccagg ccctgggcgg tgtggaaggc attctggaac 4500

acacactctt taagggcact tacttcccta cctgggaggg gcttttctgg gagaaggcca 4560

gtggctttga ggaatctatg aagtggaaga agctaactaa tgctcagcga tcaggactga 4620

accagattcc caatcgtaga ttcaccctct ggtggtcccc gaccattaat cgagccaatg 4680

tatatgtagg ctttcaggtg cagctagacc tgacgggtat cttcatgcac ggcaagatcc 4740

ccacgctgaa gatctctctc atccagatct tccgagctca cttgtggcag aagatccatg 4800

agagcattgt tatggactta tgtcaggtgt ttgaccagga acttgatgca ctggaaattg 4860

agacagtaca aaaggagaca atccatcccc gaaagtcata taagatgaac tcttcctgtg 4920

cagatatcct gctctttgcc tcctataagt ggaatgtctc ccggccctca ttgctggctg 4980

actccaagga tgtgatggac agcaccacca cccagaaata ctggattgac atccagttgc 5040

gctgggggga ctatgattcc cacgacattg agcgctacgc ccgggccaag ttcctggact 5100

acaccaccga caacatgagt atctaccctt cgcccacagg tgtactcatc gccattgacc 5160

tggcctataa cttgcacagt gcctatggaa actggttccc aggcagcaag cctctcatac 5220

aacaggccat ggccaagatc atgaaggcaa accctgccct gtatgtgtta cgtgaacgga 5280

tccgcaaggg gctacagctc tattcatctg aacccactga gccttatttg tcttctcaga 5340

actatggtga gctcttctcc aaccagatta tctggtttgt ggatgacacc aacgtctaca 5400

gagtgactat tcacaagacc tttgaaggga acttgacaac caagcccatc aacggagcca 5460

tcttcatctt caacccacgc acagggcagc tgttcctcaa gataatccac acgtccgtgt 5520

gggcgggaca gaagcgtttg gggcagttgg ctaagtggaa gacagctgag gaggtggccg 5580

ccctgatccg atctctgcct gtggaggagc agcccaagca gatcattgtc accaggaagg 5640

acatgctgga cccactggag gtgcacttac tggacttccc caatattgtc atcaaaggat 5700

cggagctcca actccctttc caggcgtgtc tcaaggtgga aaaattcggg gatctcatcc 5760

ttaaagccac tgagccccag atggttctct tcaacctcta tgacgactgg ctcaagacta 5820

tttcatctta cacggccttc tcccgtctca tcctgattct gcgtgcccta catgtgaaca 5880

acgatcgggc aaaagtgatc ctgaagccag acaagactac tattacagaa ccacaccaca 5940

tctggcccac tctgactgac gaagaatgga tcaaggtcga ggtgcagctc aaggatctga 6000

tcttggctga ctacggcaag aaaaacaatg tgaacgtggc atcactgaca caatcagaaa 6060

ttcgagacat catcctgggt atggagatct cggcaccgtc acagcagcgg cagcagatcg 6120

ctgagatcga gaagcagacc aaggaacaat cgcagctgac ggcaacacag actcgcactg 6180

tcaacaagca tggcgatgag atcatcacct ccaccaccag caactatgag acccagactt 6240

tctcatccaa gactgagtgg agggtcaggg ccatctctgc tgccaacctg cacctaagga 6300

ccaatcacat ctatgtttca tctgacgaca tcaaggagac tggctacacc tacatccttc 6360

ccaagaatgt gcttaagaag ttcatctgca tatctgacct tcgggcccaa attgcaggat 6420

acctatatgg ggtgagccca ccagataacc cccaggtgaa ggagatccgc tgcattgtga 6480

tggtgccgca gtggggcact caccagaccg tgcacctgcc tggccagctg ccccagcatg 6540

agtacctcaa ggagatggaa cccttaggtt ggatccacac tcagcccaat gagtccccgc 6600

agttatcacc ccaggatgtc accacccatg ccaagatcat ggctgacaac ccatcttggg 6660

atggcgagaa gaccattatc atcacatgca gcttcacgcc aggctcctgt acactgacgg 6720

cctacaagct gacccctagt ggctacgaat ggggccgcca gaacacagac aagggcaaca 6780

accccaaggg ctacctgcct tcacactatg agagggtgca gatgctgctg tcggaccgtt 6840

tccttggctt cttcatggtc cctgcccagt cctcgtggaa ctacaacttc atgggtgttc 6900

ggcatgaccc caacatgaaa tatgagctac agctggcgaa ccccaaagag ttctaccacg 6960

aggtgcacag gccctctcac ttcctcaact ttgctctcct gcaggagggg gaggtttact 7020

ctgcggatcg ggaggacctg tatgcctgac cgtttccctg cctcctgctt cagcctcccg 7080

aggccgaagc ctcagcccct ccagacaggc cgctgacatt cagcagtttg gcctctttcc 7140

ctctgtctgt gcttgtgttg ttgacctcct gatggcttgt catcctgaat aaaatataat 7200

aataaatttt gtataaatag g 7221

<210> SEQ ID NO: 39

<211> LENGTH: 2335

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 39

Met Ala Gly Val Phe Pro Tyr Arg Gly Pro Gly Asn Pro Val Pro Gly

1 5 10 15

Pro Leu Ala Pro Leu Pro Asp Tyr Met Ser Glu Glu Lys Leu Gln Glu

20 25 30

Lys Ala Arg Lys Trp Gln Gln Leu Gln Ala Lys Arg Tyr Ala Glu Lys

35 40 45

Arg Lys Phe Gly Phe Val Asp Ala Gln Lys Glu Asp Met Pro Pro Glu

50 55 60

His Val Arg Glu Ile Ile Arg Asp His Gly Asp Met Thr Asn Arg Lys

65 70 75 80

Phe Arg His Asp Lys Arg Val Tyr Leu Gly Ala Leu Lys Tyr Met Pro

85 90 95

His Ala Val Leu Lys Leu Leu Glu Asn Met Pro Met Pro Trp Glu Gln

100 105 110

Ile Arg Asp Val Pro Val Leu Tyr His Ile Thr Gly Ala Ile Ser Phe

115 120 125

Val Asn Glu Ile Pro Trp Val Ile Glu Pro Val Tyr Ile Ser Gln Trp

130 135 140

Gly Ser Met Trp Ile Met Met Arg Arg Glu Lys Arg Asp Arg Arg His

145 150 155 160

Phe Lys Arg Met Arg Phe Pro Pro Phe Asp Asp Glu Glu Pro Pro Leu

165 170 175

Asp Tyr Ala Asp Asn Ile Leu Asn Val Glu Pro Leu Glu Ala Ile Gln

180 185 190

Leu Glu Leu Asp Pro Glu Glu Asp Ala Pro Val Leu Asp Trp Phe Tyr

195 200 205

Asp His Gln Pro Leu Arg Asp Ser Arg Lys Tyr Val Asn Gly Ser Thr

210 215 220

Tyr Gln Arg Trp Gln Phe Thr Leu Pro Met Met Ser Thr Leu Tyr Arg

225 230 235 240

Leu Ala Asn Gln Leu Leu Thr Asp Leu Val Asp Asp Asn Tyr Phe Tyr

245 250 255

Leu Phe Asp Leu Lys Ala Phe Phe Thr Ser Lys Ala Leu Asn Met Ala

260 265 270

Ile Pro Gly Gly Pro Lys Phe Glu Pro Leu Val Arg Asp Ile Asn Leu

275 280 285

Gln Asp Glu Asp Trp Asn Glu Phe Asn Asp Ile Asn Lys Ile Ile Ile

290 295 300

Arg Gln Pro Ile Arg Thr Glu Tyr Lys Ile Ala Phe Pro Tyr Leu Tyr

305 310 315 320

Asn Asn Leu Pro His His Val His Leu Thr Trp Tyr His Thr Pro Asn

325 330 335

Val Val Phe Ile Lys Thr Glu Asp Pro Asp Leu Pro Ala Phe Tyr Phe

340 345 350

Asp Pro Leu Ile Asn Pro Ile Ser His Arg His Ser Val Lys Ser Gln

355 360 365

Glu Pro Leu Pro Asp Asp Asp Glu Glu Phe Glu Leu Pro Glu Phe Val

370 375 380

Glu Pro Phe Leu Lys Asp Thr Pro Leu Tyr Thr Asp Asn Thr Ala Asn

385 390 395 400

Gly Ile Ala Leu Leu Trp Ala Pro Arg Pro Phe Asn Leu Arg Ser Gly

405 410 415

Arg Thr Arg Arg Ala Leu Asp Ile Pro Leu Val Lys Asn Trp Tyr Arg

420 425 430

Glu His Cys Pro Ala Gly Gln Pro Val Lys Val Arg Val Ser Tyr Gln

435 440 445

Lys Leu Leu Lys Tyr Tyr Val Leu Asn Ala Leu Lys His Arg Pro Pro

450 455 460

Lys Ala Gln Lys Lys Arg Tyr Leu Phe Arg Ser Phe Lys Ala Thr Lys

465 470 475 480

Phe Phe Gln Ser Thr Lys Leu Asp Trp Val Glu Gly Trp Leu Gln Val

485 490 495

Cys Arg Gln Gly Tyr Asn Met Leu Asn Leu Leu Ile His Arg Lys Asn

500 505 510

Leu Asn Tyr Leu His Leu Asp Tyr Asn Phe Asn Leu Lys Pro Val Lys

515 520 525

Thr Leu Thr Thr Lys Glu Arg Lys Lys Ser Arg Phe Gly Asn Ala Phe

530 535 540

His Leu Cys Arg Glu Val Leu Arg Leu Thr Lys Leu Val Val Asp Ser

545 550 555 560

His Val Gln Tyr Arg Leu Gly Asn Val Asp Ala Phe Gln Leu Ala Asp

565 570 575

Gly Leu Gln Tyr Ile Phe Ala His Val Gly Gln Leu Thr Gly Met Tyr

580 585 590

Arg Tyr Lys Tyr Lys Leu Met Arg Gln Ile Arg Val Cys Lys Asp Leu

595 600 605

Lys His Leu Ile Tyr Tyr Arg Phe Asn Thr Gly Pro Val Gly Lys Gly

610 615 620

Pro Gly Cys Gly Phe Trp Ala Ala Gly Trp Arg Val Trp Leu Phe Phe

625 630 635 640

Met Arg Gly Ile Thr Pro Leu Leu Glu Arg Trp Leu Gly Asn Leu Leu

645 650 655

Ala Arg Gln Phe Glu Gly Arg His Ser Lys Gly Val Ala Lys Thr Val

660 665 670

Thr Lys Gln Arg Val Glu Ser His Phe Asp Leu Glu Leu Arg Ala Ala

675 680 685

Val Met His Asp Ile Leu Asp Met Met Pro Glu Gly Ile Lys Gln Asn

690 695 700

Lys Ala Arg Thr Ile Leu Gln His Leu Ser Glu Ala Trp Arg Cys Trp

705 710 715 720

Lys Ala Asn Ile Pro Trp Lys Val Pro Gly Leu Pro Thr Pro Ile Glu

725 730 735

Asn Met Ile Leu Arg Tyr Val Lys Ala Lys Ala Asp Trp Trp Thr Asn

740 745 750

Thr Ala His Tyr Asn Arg Glu Arg Ile Arg Arg Gly Ala Thr Val Asp

755 760 765

Lys Thr Val Cys Lys Lys Asn Leu Gly Arg Leu Thr Arg Leu Tyr Leu

770 775 780

Lys Ala Glu Gln Glu Arg Gln His Asn Tyr Leu Lys Asp Gly Pro Tyr

785 790 795 800

Ile Thr Ala Glu Glu Thr Val Ala Val Tyr Thr Thr Thr Val His Trp

805 810 815

Leu Glu Ser Arg Arg Phe Ser Pro Ile Pro Phe Pro Pro Leu Ser Tyr

820 825 830

Lys His Asp Thr Lys Leu Leu Ile Leu Ala Leu Glu Arg Leu Lys Glu

835 840 845

Ala Tyr Ser Val Lys Ser Arg Leu Asn Gln Ser Gln Arg Glu Glu Leu

850 855 860

Gly Leu Ile Glu Gln Ala Tyr Asp Asn Leu His Glu Ala Leu Ser Arg

865 870 875 880

Ile Lys Arg His Leu Leu Thr Gln Arg Ala Phe Lys Glu Val Gly Ile

885 890 895

Glu Phe Met Asp Leu Tyr Ser His Leu Val Pro Val Tyr Asp Val Glu

900 905 910

Pro Leu Glu Lys Ile Thr Asp Ala Tyr Leu Asp Gln Tyr Leu Trp Tyr

915 920 925

Glu Ala Asp Lys Arg Arg Leu Phe Pro Pro Trp Ile Lys Pro Ala Asp

930 935 940

Thr Glu Pro Pro Pro Leu Leu Val Tyr Lys Trp Cys Gln Gly Ile Asn

945 950 955 960

Asn Leu Gln Asp Val Trp Glu Thr Ser Glu Gly Glu Cys Asn Val Met

965 970 975

Leu Glu Ser Arg Phe Glu Lys Met Tyr Glu Lys Ile Asp Leu Thr Leu

980 985 990

Leu Asn Arg Leu Val Arg Leu Ile Val Asp His Asn Ile Ala Asp Tyr

995 1000 1005

Met Thr Ala Lys Asn Asn Val Val Ile Asn Tyr Lys Asp Met Asn

1010 1015 1020

His Thr Asn Ser Tyr Gly Ile Ile Arg Gly Leu Gln Phe Ala Ser

1025 1030 1035

Phe Ile Val Gln Tyr Tyr Gly Leu Val Met Asp Leu Leu Val Leu

1040 1045 1050

Gly Leu His Arg Ala Ser Glu Met Ala Gly Pro Pro Gln Met Pro

1055 1060 1065

Asn Asp Phe Leu Ser Phe Gln Asp Ile Ala Thr Glu Ala Ala His

1070 1075 1080

Pro Ile Arg Leu Phe Cys Arg Tyr Ile Asp Arg Ile His Ile Phe

1085 1090 1095

Phe Arg Phe Thr Ala Asp Glu Ala Arg Asp Leu Ile Gln Arg Tyr

1100 1105 1110

Leu Thr Glu His Pro Asp Pro Asn Asn Glu Asn Ile Val Gly Tyr

1115 1120 1125

Asn Asn Lys Lys Cys Trp Pro Arg Asp Ala Arg Met Arg Leu Met

1130 1135 1140

Lys His Asp Val Asn Leu Gly Arg Ala Val Phe Trp Asp Ile Lys

1145 1150 1155

Asn Arg Leu Pro Arg Ser Val Thr Thr Val Gln Trp Glu Asn Ser

1160 1165 1170

Phe Val Ser Val Tyr Ser Lys Asp Asn Pro Asn Leu Leu Phe Asn

1175 1180 1185

Met Cys Gly Phe Glu Cys Arg Ile Leu Pro Lys Cys Arg Thr Ser

1190 1195 1200

Tyr Glu Glu Phe Thr His Lys Asp Gly Val Trp Asn Leu Gln Asn

1205 1210 1215

Glu Val Thr Lys Glu Arg Thr Ala Gln Cys Phe Leu Arg Val Asp

1220 1225 1230

Asp Glu Ser Met Gln Arg Phe His Asn Arg Val Arg Gln Ile Leu

1235 1240 1245

Met Ala Ser Gly Ser Thr Thr Phe Thr Lys Ile Val Asn Lys Trp

1250 1255 1260

Asn Thr Ala Leu Ile Gly Leu Met Thr Tyr Phe Arg Glu Ala Val

1265 1270 1275

Val Asn Thr Gln Glu Leu Leu Asp Leu Leu Val Lys Cys Glu His

1280 1285 1290

Lys Ile Gln Thr Arg Ile Lys Ile Gly Leu Asn Ser Lys Met Pro

1295 1300 1305

Ser Arg Phe Pro Pro Val Val Phe Tyr Thr Pro Lys Glu Leu Gly

1310 1315 1320

Gly Leu Gly Met Leu Ser Met Gly His Val Leu Ile Pro Gln Ser

1325 1330 1335

Asp Leu Arg Trp Ser Lys Gln Thr Asp Val Gly Ile Thr His Phe

1340 1345 1350

Arg Ser Gly Met Ser His Glu Glu Asp Gln Leu Ile Pro Asn Leu

1355 1360 1365

Tyr Arg Tyr Ile Gln Pro Trp Glu Ser Glu Phe Ile Asp Ser Gln

1370 1375 1380

Arg Val Trp Ala Glu Tyr Ser Leu Lys Arg Gln Glu Ala Ile Ala

1385 1390 1395

Gln Asn Arg Arg Leu Thr Leu Glu Asp Leu Glu Asp Ser Trp Asp

1400 1405 1410

Arg Gly Ile Pro Arg Ile Asn Thr Leu Phe Gln Lys Asp Arg His

1415 1420 1425

Thr Leu Ala Tyr Asp Lys Gly Trp Arg Val Arg Thr Asp Phe Lys

1430 1435 1440

Gln Tyr Gln Val Leu Lys Gln Asn Pro Phe Trp Trp Thr His Gln

1445 1450 1455

Arg His Asp Gly Lys Leu Trp Asn Leu Asn Asn Tyr Arg Thr Asp

1460 1465 1470

Met Ile Gln Ala Leu Gly Gly Val Glu Gly Ile Leu Glu His Thr

1475 1480 1485

Leu Phe Lys Gly Thr Tyr Phe Pro Thr Trp Glu Gly Leu Phe Trp

1490 1495 1500

Glu Lys Ala Ser Gly Phe Glu Glu Ser Met Lys Trp Lys Lys Leu

1505 1510 1515

Thr Asn Ala Gln Arg Ser Gly Leu Asn Gln Ile Pro Asn Arg Arg

1520 1525 1530

Phe Thr Leu Trp Trp Ser Pro Thr Ile Asn Arg Ala Asn Val Tyr

1535 1540 1545

Val Gly Phe Gln Val Gln Leu Asp Leu Thr Gly Ile Phe Met His

1550 1555 1560

Gly Lys Ile Pro Thr Leu Lys Ile Ser Leu Ile Gln Ile Phe Arg

1565 1570 1575

Ala His Leu Trp Gln Lys Ile His Glu Ser Ile Val Met Asp Leu

1580 1585 1590

Cys Gln Val Phe Asp Gln Glu Leu Asp Ala Leu Glu Ile Glu Thr

1595 1600 1605

Val Gln Lys Glu Thr Ile His Pro Arg Lys Ser Tyr Lys Met Asn

1610 1615 1620

Ser Ser Cys Ala Asp Ile Leu Leu Phe Ala Ser Tyr Lys Trp Asn

1625 1630 1635

Val Ser Arg Pro Ser Leu Leu Ala Asp Ser Lys Asp Val Met Asp

1640 1645 1650

Ser Thr Thr Thr Gln Lys Tyr Trp Ile Asp Ile Gln Leu Arg Trp

1655 1660 1665

Gly Asp Tyr Asp Ser His Asp Ile Glu Arg Tyr Ala Arg Ala Lys

1670 1675 1680

Phe Leu Asp Tyr Thr Thr Asp Asn Met Ser Ile Tyr Pro Ser Pro

1685 1690 1695

Thr Gly Val Leu Ile Ala Ile Asp Leu Ala Tyr Asn Leu His Ser

1700 1705 1710

Ala Tyr Gly Asn Trp Phe Pro Gly Ser Lys Pro Leu Ile Gln Gln

1715 1720 1725

Ala Met Ala Lys Ile Met Lys Ala Asn Pro Ala Leu Tyr Val Leu

1730 1735 1740

Arg Glu Arg Ile Arg Lys Gly Leu Gln Leu Tyr Ser Ser Glu Pro

1745 1750 1755

Thr Glu Pro Tyr Leu Ser Ser Gln Asn Tyr Gly Glu Leu Phe Ser

1760 1765 1770

Asn Gln Ile Ile Trp Phe Val Asp Asp Thr Asn Val Tyr Arg Val

1775 1780 1785

Thr Ile His Lys Thr Phe Glu Gly Asn Leu Thr Thr Lys Pro Ile

1790 1795 1800

Asn Gly Ala Ile Phe Ile Phe Asn Pro Arg Thr Gly Gln Leu Phe

1805 1810 1815

Leu Lys Ile Ile His Thr Ser Val Trp Ala Gly Gln Lys Arg Leu

1820 1825 1830

Gly Gln Leu Ala Lys Trp Lys Thr Ala Glu Glu Val Ala Ala Leu

1835 1840 1845

Ile Arg Ser Leu Pro Val Glu Glu Gln Pro Lys Gln Ile Ile Val

1850 1855 1860

Thr Arg Lys Asp Met Leu Asp Pro Leu Glu Val His Leu Leu Asp

1865 1870 1875

Phe Pro Asn Ile Val Ile Lys Gly Ser Glu Leu Gln Leu Pro Phe

1880 1885 1890

Gln Ala Cys Leu Lys Val Glu Lys Phe Gly Asp Leu Ile Leu Lys

1895 1900 1905

Ala Thr Glu Pro Gln Met Val Leu Phe Asn Leu Tyr Asp Asp Trp

1910 1915 1920

Leu Lys Thr Ile Ser Ser Tyr Thr Ala Phe Ser Arg Leu Ile Leu

1925 1930 1935

Ile Leu Arg Ala Leu His Val Asn Asn Asp Arg Ala Lys Val Ile

1940 1945 1950

Leu Lys Pro Asp Lys Thr Thr Ile Thr Glu Pro His His Ile Trp

1955 1960 1965

Pro Thr Leu Thr Asp Glu Glu Trp Ile Lys Val Glu Val Gln Leu

1970 1975 1980

Lys Asp Leu Ile Leu Ala Asp Tyr Gly Lys Lys Asn Asn Val Asn

1985 1990 1995

Val Ala Ser Leu Thr Gln Ser Glu Ile Arg Asp Ile Ile Leu Gly

2000 2005 2010

Met Glu Ile Ser Ala Pro Ser Gln Gln Arg Gln Gln Ile Ala Glu

2015 2020 2025

Ile Glu Lys Gln Thr Lys Glu Gln Ser Gln Leu Thr Ala Thr Gln

2030 2035 2040

Thr Arg Thr Val Asn Lys His Gly Asp Glu Ile Ile Thr Ser Thr

2045 2050 2055

Thr Ser Asn Tyr Glu Thr Gln Thr Phe Ser Ser Lys Thr Glu Trp

2060 2065 2070

Arg Val Arg Ala Ile Ser Ala Ala Asn Leu His Leu Arg Thr Asn

2075 2080 2085

His Ile Tyr Val Ser Ser Asp Asp Ile Lys Glu Thr Gly Tyr Thr

2090 2095 2100

Tyr Ile Leu Pro Lys Asn Val Leu Lys Lys Phe Ile Cys Ile Ser

2105 2110 2115

Asp Leu Arg Ala Gln Ile Ala Gly Tyr Leu Tyr Gly Val Ser Pro

2120 2125 2130

Pro Asp Asn Pro Gln Val Lys Glu Ile Arg Cys Ile Val Met Val

2135 2140 2145

Pro Gln Trp Gly Thr His Gln Thr Val His Leu Pro Gly Gln Leu

2150 2155 2160

Pro Gln His Glu Tyr Leu Lys Glu Met Glu Pro Leu Gly Trp Ile

2165 2170 2175

His Thr Gln Pro Asn Glu Ser Pro Gln Leu Ser Pro Gln Asp Val

2180 2185 2190

Thr Thr His Ala Lys Ile Met Ala Asp Asn Pro Ser Trp Asp Gly

2195 2200 2205

Glu Lys Thr Ile Ile Ile Thr Cys Ser Phe Thr Pro Gly Ser Cys

2210 2215 2220

Thr Leu Thr Ala Tyr Lys Leu Thr Pro Ser Gly Tyr Glu Trp Gly

2225 2230 2235

Arg Gln Asn Thr Asp Lys Gly Asn Asn Pro Lys Gly Tyr Leu Pro

2240 2245 2250

Ser His Tyr Glu Arg Val Gln Met Leu Leu Ser Asp Arg Phe Leu

2255 2260 2265

Gly Phe Phe Met Val Pro Ala Gln Ser Ser Trp Asn Tyr Asn Phe

2270 2275 2280

Met Gly Val Arg His Asp Pro Asn Met Lys Tyr Glu Leu Gln Leu

2285 2290 2295

Ala Asn Pro Lys Glu Phe Tyr His Glu Val His Arg Pro Ser His

2300 2305 2310

Phe Leu Asn Phe Ala Leu Leu Gln Glu Gly Glu Val Tyr Ser Ala

2315 2320 2325

Asp Arg Glu Asp Leu Tyr Ala

2330 2335

<210> SEQ ID NO: 40

<211> LENGTH: 7972

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 40

atttgaagtc ctcgttccac gccttctcat catcctgaac accgagctct gggactccgg 60

cggagaatct aaacgtaaag catcacccac ggtcgtgaac tgtaggctct cctggcatcc 120

gggatcttat tctggccttg gcggagttgg ggatggtgtc gcctagcagc cgctgccgct 180

ttggcttgct cgggaccatt tggctggacc cagagtccgc gtggaaccgc gatagggatc 240

tgtcagggcc cgcggccggg tccagcttgg tggttgcggt agtgagaggc ctccgctggt 300

tgccaggctt ggtctagagg tggagcacag tgaaagaatt caagatgcca cctaatataa 360

actggaaaga aataatgaaa gttgacccag atgacctgcc ccgtcaagaa gaactggcag 420

ataatttatt gatttcctta tccaaggtgg aagtaaatga gctaaaaagt gaaaagcaag 480

aaaatgtgat acaccttttc agaattactc agtcactaat gaagatgaaa gctcaagaag 540

tggagctggc tttggaagaa gtagaaaaag ctggagaaga acaagcaaaa tttgaaaatc 600

aattaaaaac taaagtaatg aaactggaaa atgaactgga gatggctcag cagtctgcag 660

gtggacgaga tactcggttt ttacgtaatg aaatttgcca acttgaaaaa caattagaac 720

aaaaagatag agaattggag gacatggaaa aggagttgga gaaagagaag aaagttaatg 780

agcaattggc tcttcgaaat gaggaggcag aaaatgaaaa cagcaaatta agaagagaga 840

acaaacgtct aaagaaaaag aatgaacaac tttgtcagga tattattgac taccagaaac 900

aaatagattc acagaaagaa acacttttat caagaagagg ggaagacagt gactaccgat 960

cacagttgtc taaaaaaaac tatgagctta tccaatatct tgatgaaatt cagactttaa 1020

cagaagctaa tgagaaaatt gaagttcaga atcaagaaat gagaaaaaat ttagaagagt 1080

ctgtacagga aatggagaag atgactgatg aatataatag aatgaaagct attgtgcatc 1140

agacagataa tgtaatagat cagttaaaaa aagaaaacga tcattatcaa cttcaagtgc 1200

aggagcttac agatcttctg aaatcaaaaa atgaagaaga tgatccaatt atggtagctg 1260

tcaatgcaaa agtagaagaa tggaagctaa ttttgtcttc taaagatgat gaaattattg 1320

agtatcagca aatgttacat aacctaaggg agaaacttaa gaatgctcag cttgatgctg 1380

ataaaagtaa tgttatggct ctacagcagg gtatacagga acgagacagt caaattaaga 1440

tgctcaccga acaagtagaa caatatacaa aagaaatgga aaagaatact tgtattattg 1500

aagatttgaa aaatgagctc caaagaaaca aaggtgcttc aaccctttct caacagactc 1560

atatgaaaat tcagtcaacg ttagacattt taaaagagaa aactaaagag gctgagagaa 1620

cagctgaact ggctgaggct gatgctaggg aaaaggataa agaattagtt gaggctctga 1680

agaggttaaa agattatgaa tcgggagtat atggtttaga agatgctgtc gttgaaataa 1740

agaattgtaa aaaccaaatt aaaataagag atcgagagat tgaaatatta acaaaggaaa 1800

tcaataaact tgaattgaag atcagtgatt tccttgatga aaatgaggca cttagagagc 1860

gtgtgggcct tgaaccaaag acaatgattg atttaactga atttagaaat agcaaacact 1920

taaaacagca gcagtacaga gctgaaaacc agattctttt gaaagagatt gaaagtctag 1980

aggaagaacg acttgatctg aaaaaaaaaa ttcgtcaaat ggctcaagaa agaggaaaaa 2040

gaagtgcaac ttcaggatta accactgagg acctgaacct aactgaaaac atttctcaag 2100

gagatagaat aagtgaaaga aaattggatt tattgagcct caaaaatatg agtgaagcac 2160

aatcaaagaa tgaatttctt tcaagagaac taattgaaaa agaaagagat ttagaaagga 2220

gtaggacagt gatagccaaa tttcagaata aattaaaaga attagttgaa gaaaataagc 2280

aacttgaaga aggtatgaaa gaaatattgc aagcaattaa ggaaatgcag aaagatcctg 2340

atgttaaagg aggagaaaca tctctaatta tccctagcct tgaaagacta gttaatgcta 2400

tagaatcaaa gaatgcagaa ggaatctttg atgcgagtct gcatttgaaa gcccaagttg 2460

atcagcttac cggaagaaat gaagaattaa gacaggagct cagggaatct cggaaagagg 2520

ctataaatta ttcacagcag ttggcaaaag ctaatttaaa gatagaccat cttgaaaaag 2580

aaactagtct tttacgacaa tcagaaggat cgaatgttgt ttttaaagga attgacttac 2640

ctgatgggat agcaccatct agtgccagta tcattaattc tcagaatgaa tatttaatac 2700

atttgttaca ggaactagaa aataaagaaa aaaagttaaa gaatttagaa gattctcttg 2760

aagattacaa cagaaaattt gctgtaattc gtcatcaaca aagtttgttg tataaagaat 2820

acctaagtga aaaggagacc tggaaaacag aatctaaaac aataaaagag gaaaagagaa 2880

aacttgagga tcaagtccaa caagatgcta taaaagtaaa agaatataat aatttgctca 2940

atgctcttca gatggattcg gatgaaatga aaaaaatact tgcagaaaat agtaggaaaa 3000

ttactgtttt gcaagtgaat gaaaaatcac ttataaggca atatacaacc ttagtagaat 3060

tggagcgaca acttagaaaa gaaaatgaga agcaaaagaa tgaattgttg tcaatggagg 3120

ctgaagtttg tgaaaaaatt gggtgtttgc aaagatttaa ggaaatggcc attttcaaga 3180

ttgcagctct ccaaaaagtt gtagataata gtgtttcttt gtctgaacta gaactggcta 3240

ataaacagta caatgaactg actgctaagt acagggacat cttgcaaaaa gataatatgc 3300

ttgttcaaag aacaagtaac ttggaacacc tggagtgtga aaacatctcc ttaaaagaac 3360

aagtggagtc tataaataaa gaactggaga ttaccaagga aaaacttcac actattgaac 3420

aagcctggga acaggaaact aaattaggta atgaatctag catggataag gcaaagaaat 3480

caataaccaa cagtgacatt gtttccattt caaaaaaaat aactatgctg gaaatgaagg 3540

aattaaatga aaggcagcgg gctgaacatt gtcaaaaaat gtatgaacac ttacggactt 3600

cgttaaagca aatggaggaa cgtaattttg aattggaaac caaatttgct gagcttacca 3660

aaatcaattt ggatgcacag aaggtggaac agatgttaag agatgaatta gctgatagtg 3720

tgagcaaggc agtaagtgat gctgataggc aacggattct agaattagag aagaatgaaa 3780

tggaactaaa agttgaagtg tcaaaactga gagagatttc tgatattgcc agaagacaag 3840

ttgaaatttt gaatgcacaa caacaatcta gggacaagga agtagagtcc ctcagaatgc 3900

aactgctaga ctatcaggca cagtctgatg aaaagtcgct cattgccaag ttgcaccaac 3960

ataatgtctc tcttcaactg agtgaggcta ctgctcttgg taagttggag tcaattacat 4020

ctaaactgca gaagatggag gcctacaact tgcgcttaga gcagaaactt gatgaaaaag 4080

aacaggctct ctattatgct cgtttggagg gaagaaacag agcaaaacat ctgcgccaaa 4140

caattcagtc tctacgacga cagtttagtg gagctttacc cttggcacaa caggaaaagt 4200

tctccaaaac aatgattcaa ctacaaaatg acaaacttaa gataatgcaa gaaatgaaaa 4260

attctcaaca agaacataga aatatggaga acaaaacatt ggagatggaa ttaaaattaa 4320

agggcctgga agagttaata agcactttaa aggataccaa aggagcccaa aaggtaatca 4380

actggcatat gaaaatagaa gaacttcgtc ttcaagaact taaactaaat cgggaattag 4440

tcaaggataa agaagaaata aaatatttga ataacataat ttctgaatat gaacgtacaa 4500

tcagcagtct tgaagaagaa attgtgcaac agaacaagtt tcatgaagaa agacaaatgg 4560

cctgggatca aagagaagtt gacctggaac gccaactaga catttttgac cgtcagcaaa 4620

atgaaatact aaatgcggca caaaagtttg aagaagctac aggatcaatc cctgacccta 4680

gtttgcccct tccaaatcaa cttgagatcg ctctaaggaa aattaaggag aacattcgaa 4740

taattctaga aacacgggca acttgcaaat cactagaaga gaaactaaaa gagaaagaat 4800

ctgctttaag gttagcagaa caaaatatac tgtcaagaga caaagtaatc aatgaactga 4860

ggcttcgatt gcctgccact gcagaaagag aaaagctcat agctgagcta ggcagaaaag 4920

agatggaacc aaaatctcac cacacattga aaattgctca tcaaaccatt gcaaacatgc 4980

aagcaaggtt aaatcaaaaa gaagaagtat taaagaagta tcaacgtctt ctagaaaaag 5040

ccagagagga gcaaagagaa attgtgaaga aacatgagga agaccttcat attcttcatc 5100

acagattaga actacaggct gatagttcac taaataaatt caaacaaacg gcttgggatt 5160

taatgaaaca gtctcccact ccagttccta ccaacaagca ttttattcgt ctggctgaga 5220

tggaacagac agtagcagaa caagatgact ctctttcctc actcttggtc aaactaaaga 5280

aagtatcaca agatttggag agacaaagag aaatcactga attaaaagta aaagaatttg 5340

aaaatatcaa attacagctt caagaaaacc atgaagatga agtgaaaaaa gtaaaagcgg 5400

aagtagagga tttaaagtat cttctggacc agtcacaaaa ggagtcacag tgtttaaaat 5460

ctgaacttca ggctcaaaaa gaagcaaatt caagagctcc aacaactaca atgagaaatc 5520

tagtagaacg gctaaagagc caattagcct tgaaggagaa acaacagaaa gcacttagtc 5580

gggcactttt agaactccgg gcagaaatga cagcagctgc tgaagaacgt attatttctg 5640

caacttctca aaaagaggcc catctcaatg ttcaacaaat cgttgatcga catactagag 5700

agctaaagac acaagttgaa gatttaaatg aaaatctttt aaaattgaaa gaagcactta 5760

aaacaagtaa aaacagagaa aactcactaa ctgataattt gaatgactta aataatgaac 5820

tgcaaaagaa acaaaaagcc tataataaaa tacttagaga gaaagaggaa attgatcaag 5880

agaatgatga actgaaaagg caaattaaaa gactaaccag tggattacag ggcaaacccc 5940

tgacagataa taaacaaagt ctaattgaag aactccaaag gaaagttaaa aaactagaga 6000

accaattaga gggaaaggtg gaggaagtag acctaaaacc tatgaaagaa aagaatgcta 6060

aagaagaatt aattaggtgg gaagaaggta aaaagtggca agccaaaata gaaggaattc 6120

gaaacaagtt aaaagagaaa gagggggaag tctttacttt aacaaagcag ttgaatactt 6180

tgaaggatct ttttgccaaa gccgataaag agaaacttac tttgcagagg aaactaaaaa 6240

caactggcat gactgttgat caggttttgg gaatacgagc tttggagtca gaaaaagaat 6300

tggaagaatt aaaaaagaga aatcttgact tagaaaatga tatattgtat atgagggccc 6360

accaagctct tcctcgagat tctgttgtag aagatttaca tttacaaaat agatacctcc 6420

aagaaaaact tcatgcttta gaaaaacagt tttcaaagga tacatattct aagccttcaa 6480

tttcaggaat agagtcagat gatcattgtc agagagaaca ggagcttcag aaggaaaact 6540

tgaagttgtc atctgaaaat attgaactga aatttcagct tgaacaagca aataaagatt 6600

tgccaagatt aaagaatcaa gtcagagatt tgaaggaaat gtgtgaattt cttaagaaag 6660

aaaaagcaga agttcagcgg aaacttggcc atgttagagg gtctggtaga agtggaaaga 6720

caatcccaga actggaaaaa accattggtt taatgaaaaa agtagttgaa aaagtccaga 6780

gagaaaatga acagttgaaa aaagcatcag gaatattgac tagtgaaaaa atggctaata 6840

ttgagcagga aaatgaaaaa ttgaaggctg aattagaaaa acttaaagct catcttgggc 6900

atcagttgag catgcactat gaatccaaga ccaaaggcac agaaaaaatt attgctgaaa 6960

atgaaaggct tcgtaaagaa cttaaaaaag aaactgatgc tgcagagaaa ttacggatag 7020

caaagaataa tttagagata ttaaatgaga agatgacagt tcaactagaa gagactggta 7080

agagattgca gtttgcagaa agcagaggtc cacagcttga aggtgctgac agtaagagct 7140

ggaaatccat tgtggttaca agaatgtatg aaaccaagtt aaaagaattg gaaactgata 7200

ttgccaaaaa aaatcaaagc attactgacc ttaaacagct tgtaaaagaa gcaacagaga 7260

gagaacaaaa agttaacaaa tacaatgaag accttgaaca acagattaag attcttaaac 7320

atgttcctga aggtgctgag acagagcaag gccttaaacg ggagcttcaa gttcttagat 7380

tagctaatca tcagctggat aaagagaaag cagaattaat ccatcagata gaagctaaca 7440

aggaccaaag tggagctgaa agcaccatac ctgatgctga tcaactaaag gaaaaaataa 7500

aagatctaga gacacagctc aaaatgtcag atctagaaaa gcagcatttg aaggaggaaa 7560

taaagaagct gaaaaaagaa ctggaaaatt ttgatccttc attttttgaa gaaattgaag 7620

atcttaagta taattacaag gaagaagtga agaagaatat tctcttagaa gagaaggtaa 7680

aaaaactttc agaacaattg ggagttgaat taactagccc tgttgctgct tctgaagagt 7740

ttgaagatga agaagaaagt cctgttaatt tccccattta ctaaaggtca cctataaact 7800

ttgtttcatt taactattta ttaactttat aagttaaata tacttggaaa taagcagttc 7860

tccgaactgt agtatttcct tctcactacc ttgtaccttt atacttagat tggaattctt 7920

aataaataaa attatatgaa attttcaact tattaaaaaa aaaaaaaaaa aa 7972

<210> SEQ ID NO: 41

<211> LENGTH: 2479

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 41

Met Pro Pro Asn Ile Asn Trp Lys Glu Ile Met Lys Val Asp Pro Asp

1 5 10 15

Asp Leu Pro Arg Gln Glu Glu Leu Ala Asp Asn Leu Leu Ile Ser Leu

20 25 30

Ser Lys Val Glu Val Asn Glu Leu Lys Ser Glu Lys Gln Glu Asn Val

35 40 45

Ile His Leu Phe Arg Ile Thr Gln Ser Leu Met Lys Met Lys Ala Gln

50 55 60

Glu Val Glu Leu Ala Leu Glu Glu Val Glu Lys Ala Gly Glu Glu Gln

65 70 75 80

Ala Lys Phe Glu Asn Gln Leu Lys Thr Lys Val Met Lys Leu Glu Asn

85 90 95

Glu Leu Glu Met Ala Gln Gln Ser Ala Gly Gly Arg Asp Thr Arg Phe

100 105 110

Leu Arg Asn Glu Ile Cys Gln Leu Glu Lys Gln Leu Glu Gln Lys Asp

115 120 125

Arg Glu Leu Glu Asp Met Glu Lys Glu Leu Glu Lys Glu Lys Lys Val

130 135 140

Asn Glu Gln Leu Ala Leu Arg Asn Glu Glu Ala Glu Asn Glu Asn Ser

145 150 155 160

Lys Leu Arg Arg Glu Asn Lys Arg Leu Lys Lys Lys Asn Glu Gln Leu

165 170 175

Cys Gln Asp Ile Ile Asp Tyr Gln Lys Gln Ile Asp Ser Gln Lys Glu

180 185 190

Thr Leu Leu Ser Arg Arg Gly Glu Asp Ser Asp Tyr Arg Ser Gln Leu

195 200 205

Ser Lys Lys Asn Tyr Glu Leu Ile Gln Tyr Leu Asp Glu Ile Gln Thr

210 215 220

Leu Thr Glu Ala Asn Glu Lys Ile Glu Val Gln Asn Gln Glu Met Arg

225 230 235 240

Lys Asn Leu Glu Glu Ser Val Gln Glu Met Glu Lys Met Thr Asp Glu

245 250 255

Tyr Asn Arg Met Lys Ala Ile Val His Gln Thr Asp Asn Val Ile Asp

260 265 270

Gln Leu Lys Lys Glu Asn Asp His Tyr Gln Leu Gln Val Gln Glu Leu

275 280 285

Thr Asp Leu Leu Lys Ser Lys Asn Glu Glu Asp Asp Pro Ile Met Val

290 295 300

Ala Val Asn Ala Lys Val Glu Glu Trp Lys Leu Ile Leu Ser Ser Lys

305 310 315 320

Asp Asp Glu Ile Ile Glu Tyr Gln Gln Met Leu His Asn Leu Arg Glu

325 330 335

Lys Leu Lys Asn Ala Gln Leu Asp Ala Asp Lys Ser Asn Val Met Ala

340 345 350

Leu Gln Gln Gly Ile Gln Glu Arg Asp Ser Gln Ile Lys Met Leu Thr

355 360 365

Glu Gln Val Glu Gln Tyr Thr Lys Glu Met Glu Lys Asn Thr Cys Ile

370 375 380

Ile Glu Asp Leu Lys Asn Glu Leu Gln Arg Asn Lys Gly Ala Ser Thr

385 390 395 400

Leu Ser Gln Gln Thr His Met Lys Ile Gln Ser Thr Leu Asp Ile Leu

405 410 415

Lys Glu Lys Thr Lys Glu Ala Glu Arg Thr Ala Glu Leu Ala Glu Ala

420 425 430

Asp Ala Arg Glu Lys Asp Lys Glu Leu Val Glu Ala Leu Lys Arg Leu

435 440 445

Lys Asp Tyr Glu Ser Gly Val Tyr Gly Leu Glu Asp Ala Val Val Glu

450 455 460

Ile Lys Asn Cys Lys Asn Gln Ile Lys Ile Arg Asp Arg Glu Ile Glu

465 470 475 480

Ile Leu Thr Lys Glu Ile Asn Lys Leu Glu Leu Lys Ile Ser Asp Phe

485 490 495

Leu Asp Glu Asn Glu Ala Leu Arg Glu Arg Val Gly Leu Glu Pro Lys

500 505 510

Thr Met Ile Asp Leu Thr Glu Phe Arg Asn Ser Lys His Leu Lys Gln

515 520 525

Gln Gln Tyr Arg Ala Glu Asn Gln Ile Leu Leu Lys Glu Ile Glu Ser

530 535 540

Leu Glu Glu Glu Arg Leu Asp Leu Lys Lys Lys Ile Arg Gln Met Ala

545 550 555 560

Gln Glu Arg Gly Lys Arg Ser Ala Thr Ser Gly Leu Thr Thr Glu Asp

565 570 575

Leu Asn Leu Thr Glu Asn Ile Ser Gln Gly Asp Arg Ile Ser Glu Arg

580 585 590

Lys Leu Asp Leu Leu Ser Leu Lys Asn Met Ser Glu Ala Gln Ser Lys

595 600 605

Asn Glu Phe Leu Ser Arg Glu Leu Ile Glu Lys Glu Arg Asp Leu Glu

610 615 620

Arg Ser Arg Thr Val Ile Ala Lys Phe Gln Asn Lys Leu Lys Glu Leu

625 630 635 640

Val Glu Glu Asn Lys Gln Leu Glu Glu Gly Met Lys Glu Ile Leu Gln

645 650 655

Ala Ile Lys Glu Met Gln Lys Asp Pro Asp Val Lys Gly Gly Glu Thr

660 665 670

Ser Leu Ile Ile Pro Ser Leu Glu Arg Leu Val Asn Ala Ile Glu Ser

675 680 685

Lys Asn Ala Glu Gly Ile Phe Asp Ala Ser Leu His Leu Lys Ala Gln

690 695 700

Val Asp Gln Leu Thr Gly Arg Asn Glu Glu Leu Arg Gln Glu Leu Arg

705 710 715 720

Glu Ser Arg Lys Glu Ala Ile Asn Tyr Ser Gln Gln Leu Ala Lys Ala

725 730 735

Asn Leu Lys Ile Asp His Leu Glu Lys Glu Thr Ser Leu Leu Arg Gln

740 745 750

Ser Glu Gly Ser Asn Val Val Phe Lys Gly Ile Asp Leu Pro Asp Gly

755 760 765

Ile Ala Pro Ser Ser Ala Ser Ile Ile Asn Ser Gln Asn Glu Tyr Leu

770 775 780

Ile His Leu Leu Gln Glu Leu Glu Asn Lys Glu Lys Lys Leu Lys Asn

785 790 795 800

Leu Glu Asp Ser Leu Glu Asp Tyr Asn Arg Lys Phe Ala Val Ile Arg

805 810 815

His Gln Gln Ser Leu Leu Tyr Lys Glu Tyr Leu Ser Glu Lys Glu Thr

820 825 830

Trp Lys Thr Glu Ser Lys Thr Ile Lys Glu Glu Lys Arg Lys Leu Glu

835 840 845

Asp Gln Val Gln Gln Asp Ala Ile Lys Val Lys Glu Tyr Asn Asn Leu

850 855 860

Leu Asn Ala Leu Gln Met Asp Ser Asp Glu Met Lys Lys Ile Leu Ala

865 870 875 880

Glu Asn Ser Arg Lys Ile Thr Val Leu Gln Val Asn Glu Lys Ser Leu

885 890 895

Ile Arg Gln Tyr Thr Thr Leu Val Glu Leu Glu Arg Gln Leu Arg Lys

900 905 910

Glu Asn Glu Lys Gln Lys Asn Glu Leu Leu Ser Met Glu Ala Glu Val

915 920 925

Cys Glu Lys Ile Gly Cys Leu Gln Arg Phe Lys Glu Met Ala Ile Phe

930 935 940

Lys Ile Ala Ala Leu Gln Lys Val Val Asp Asn Ser Val Ser Leu Ser

945 950 955 960

Glu Leu Glu Leu Ala Asn Lys Gln Tyr Asn Glu Leu Thr Ala Lys Tyr

965 970 975

Arg Asp Ile Leu Gln Lys Asp Asn Met Leu Val Gln Arg Thr Ser Asn

980 985 990

Leu Glu His Leu Glu Cys Glu Asn Ile Ser Leu Lys Glu Gln Val Glu

995 1000 1005

Ser Ile Asn Lys Glu Leu Glu Ile Thr Lys Glu Lys Leu His Thr

1010 1015 1020

Ile Glu Gln Ala Trp Glu Gln Glu Thr Lys Leu Gly Asn Glu Ser

1025 1030 1035

Ser Met Asp Lys Ala Lys Lys Ser Ile Thr Asn Ser Asp Ile Val

1040 1045 1050

Ser Ile Ser Lys Lys Ile Thr Met Leu Glu Met Lys Glu Leu Asn

1055 1060 1065

Glu Arg Gln Arg Ala Glu His Cys Gln Lys Met Tyr Glu His Leu

1070 1075 1080

Arg Thr Ser Leu Lys Gln Met Glu Glu Arg Asn Phe Glu Leu Glu

1085 1090 1095

Thr Lys Phe Ala Glu Leu Thr Lys Ile Asn Leu Asp Ala Gln Lys

1100 1105 1110

Val Glu Gln Met Leu Arg Asp Glu Leu Ala Asp Ser Val Ser Lys

1115 1120 1125

Ala Val Ser Asp Ala Asp Arg Gln Arg Ile Leu Glu Leu Glu Lys

1130 1135 1140

Asn Glu Met Glu Leu Lys Val Glu Val Ser Lys Leu Arg Glu Ile

1145 1150 1155

Ser Asp Ile Ala Arg Arg Gln Val Glu Ile Leu Asn Ala Gln Gln

1160 1165 1170

Gln Ser Arg Asp Lys Glu Val Glu Ser Leu Arg Met Gln Leu Leu

1175 1180 1185

Asp Tyr Gln Ala Gln Ser Asp Glu Lys Ser Leu Ile Ala Lys Leu

1190 1195 1200

His Gln His Asn Val Ser Leu Gln Leu Ser Glu Ala Thr Ala Leu

1205 1210 1215

Gly Lys Leu Glu Ser Ile Thr Ser Lys Leu Gln Lys Met Glu Ala

1220 1225 1230

Tyr Asn Leu Arg Leu Glu Gln Lys Leu Asp Glu Lys Glu Gln Ala

1235 1240 1245

Leu Tyr Tyr Ala Arg Leu Glu Gly Arg Asn Arg Ala Lys His Leu

1250 1255 1260

Arg Gln Thr Ile Gln Ser Leu Arg Arg Gln Phe Ser Gly Ala Leu

1265 1270 1275

Pro Leu Ala Gln Gln Glu Lys Phe Ser Lys Thr Met Ile Gln Leu

1280 1285 1290

Gln Asn Asp Lys Leu Lys Ile Met Gln Glu Met Lys Asn Ser Gln

1295 1300 1305

Gln Glu His Arg Asn Met Glu Asn Lys Thr Leu Glu Met Glu Leu

1310 1315 1320

Lys Leu Lys Gly Leu Glu Glu Leu Ile Ser Thr Leu Lys Asp Thr

1325 1330 1335

Lys Gly Ala Gln Lys Val Ile Asn Trp His Met Lys Ile Glu Glu

1340 1345 1350

Leu Arg Leu Gln Glu Leu Lys Leu Asn Arg Glu Leu Val Lys Asp

1355 1360 1365

Lys Glu Glu Ile Lys Tyr Leu Asn Asn Ile Ile Ser Glu Tyr Glu

1370 1375 1380

Arg Thr Ile Ser Ser Leu Glu Glu Glu Ile Val Gln Gln Asn Lys

1385 1390 1395

Phe His Glu Glu Arg Gln Met Ala Trp Asp Gln Arg Glu Val Asp

1400 1405 1410

Leu Glu Arg Gln Leu Asp Ile Phe Asp Arg Gln Gln Asn Glu Ile

1415 1420 1425

Leu Asn Ala Ala Gln Lys Phe Glu Glu Ala Thr Gly Ser Ile Pro

1430 1435 1440

Asp Pro Ser Leu Pro Leu Pro Asn Gln Leu Glu Ile Ala Leu Arg

1445 1450 1455

Lys Ile Lys Glu Asn Ile Arg Ile Ile Leu Glu Thr Arg Ala Thr

1460 1465 1470

Cys Lys Ser Leu Glu Glu Lys Leu Lys Glu Lys Glu Ser Ala Leu

1475 1480 1485

Arg Leu Ala Glu Gln Asn Ile Leu Ser Arg Asp Lys Val Ile Asn

1490 1495 1500

Glu Leu Arg Leu Arg Leu Pro Ala Thr Ala Glu Arg Glu Lys Leu

1505 1510 1515

Ile Ala Glu Leu Gly Arg Lys Glu Met Glu Pro Lys Ser His His

1520 1525 1530

Thr Leu Lys Ile Ala His Gln Thr Ile Ala Asn Met Gln Ala Arg

1535 1540 1545

Leu Asn Gln Lys Glu Glu Val Leu Lys Lys Tyr Gln Arg Leu Leu

1550 1555 1560

Glu Lys Ala Arg Glu Glu Gln Arg Glu Ile Val Lys Lys His Glu

1565 1570 1575

Glu Asp Leu His Ile Leu His His Arg Leu Glu Leu Gln Ala Asp

1580 1585 1590

Ser Ser Leu Asn Lys Phe Lys Gln Thr Ala Trp Asp Leu Met Lys

1595 1600 1605

Gln Ser Pro Thr Pro Val Pro Thr Asn Lys His Phe Ile Arg Leu

1610 1615 1620

Ala Glu Met Glu Gln Thr Val Ala Glu Gln Asp Asp Ser Leu Ser

1625 1630 1635

Ser Leu Leu Val Lys Leu Lys Lys Val Ser Gln Asp Leu Glu Arg

1640 1645 1650

Gln Arg Glu Ile Thr Glu Leu Lys Val Lys Glu Phe Glu Asn Ile

1655 1660 1665

Lys Leu Gln Leu Gln Glu Asn His Glu Asp Glu Val Lys Lys Val

1670 1675 1680

Lys Ala Glu Val Glu Asp Leu Lys Tyr Leu Leu Asp Gln Ser Gln

1685 1690 1695

Lys Glu Ser Gln Cys Leu Lys Ser Glu Leu Gln Ala Gln Lys Glu

1700 1705 1710

Ala Asn Ser Arg Ala Pro Thr Thr Thr Met Arg Asn Leu Val Glu

1715 1720 1725

Arg Leu Lys Ser Gln Leu Ala Leu Lys Glu Lys Gln Gln Lys Ala

1730 1735 1740

Leu Ser Arg Ala Leu Leu Glu Leu Arg Ala Glu Met Thr Ala Ala

1745 1750 1755

Ala Glu Glu Arg Ile Ile Ser Ala Thr Ser Gln Lys Glu Ala His

1760 1765 1770

Leu Asn Val Gln Gln Ile Val Asp Arg His Thr Arg Glu Leu Lys

1775 1780 1785

Thr Gln Val Glu Asp Leu Asn Glu Asn Leu Leu Lys Leu Lys Glu

1790 1795 1800

Ala Leu Lys Thr Ser Lys Asn Arg Glu Asn Ser Leu Thr Asp Asn

1805 1810 1815

Leu Asn Asp Leu Asn Asn Glu Leu Gln Lys Lys Gln Lys Ala Tyr

1820 1825 1830

Asn Lys Ile Leu Arg Glu Lys Glu Glu Ile Asp Gln Glu Asn Asp

1835 1840 1845

Glu Leu Lys Arg Gln Ile Lys Arg Leu Thr Ser Gly Leu Gln Gly

1850 1855 1860

Lys Pro Leu Thr Asp Asn Lys Gln Ser Leu Ile Glu Glu Leu Gln

1865 1870 1875

Arg Lys Val Lys Lys Leu Glu Asn Gln Leu Glu Gly Lys Val Glu

1880 1885 1890

Glu Val Asp Leu Lys Pro Met Lys Glu Lys Asn Ala Lys Glu Glu

1895 1900 1905

Leu Ile Arg Trp Glu Glu Gly Lys Lys Trp Gln Ala Lys Ile Glu

1910 1915 1920

Gly Ile Arg Asn Lys Leu Lys Glu Lys Glu Gly Glu Val Phe Thr

1925 1930 1935

Leu Thr Lys Gln Leu Asn Thr Leu Lys Asp Leu Phe Ala Lys Ala

1940 1945 1950

Asp Lys Glu Lys Leu Thr Leu Gln Arg Lys Leu Lys Thr Thr Gly

1955 1960 1965

Met Thr Val Asp Gln Val Leu Gly Ile Arg Ala Leu Glu Ser Glu

1970 1975 1980

Lys Glu Leu Glu Glu Leu Lys Lys Arg Asn Leu Asp Leu Glu Asn

1985 1990 1995

Asp Ile Leu Tyr Met Arg Ala His Gln Ala Leu Pro Arg Asp Ser

2000 2005 2010

Val Val Glu Asp Leu His Leu Gln Asn Arg Tyr Leu Gln Glu Lys

2015 2020 2025

Leu His Ala Leu Glu Lys Gln Phe Ser Lys Asp Thr Tyr Ser Lys

2030 2035 2040

Pro Ser Ile Ser Gly Ile Glu Ser Asp Asp His Cys Gln Arg Glu

2045 2050 2055

Gln Glu Leu Gln Lys Glu Asn Leu Lys Leu Ser Ser Glu Asn Ile

2060 2065 2070

Glu Leu Lys Phe Gln Leu Glu Gln Ala Asn Lys Asp Leu Pro Arg

2075 2080 2085

Leu Lys Asn Gln Val Arg Asp Leu Lys Glu Met Cys Glu Phe Leu

2090 2095 2100

Lys Lys Glu Lys Ala Glu Val Gln Arg Lys Leu Gly His Val Arg

2105 2110 2115

Gly Ser Gly Arg Ser Gly Lys Thr Ile Pro Glu Leu Glu Lys Thr

2120 2125 2130

Ile Gly Leu Met Lys Lys Val Val Glu Lys Val Gln Arg Glu Asn

2135 2140 2145

Glu Gln Leu Lys Lys Ala Ser Gly Ile Leu Thr Ser Glu Lys Met

2150 2155 2160

Ala Asn Ile Glu Gln Glu Asn Glu Lys Leu Lys Ala Glu Leu Glu

2165 2170 2175

Lys Leu Lys Ala His Leu Gly His Gln Leu Ser Met His Tyr Glu

2180 2185 2190

Ser Lys Thr Lys Gly Thr Glu Lys Ile Ile Ala Glu Asn Glu Arg

2195 2200 2205

Leu Arg Lys Glu Leu Lys Lys Glu Thr Asp Ala Ala Glu Lys Leu

2210 2215 2220

Arg Ile Ala Lys Asn Asn Leu Glu Ile Leu Asn Glu Lys Met Thr

2225 2230 2235

Val Gln Leu Glu Glu Thr Gly Lys Arg Leu Gln Phe Ala Glu Ser

2240 2245 2250

Arg Gly Pro Gln Leu Glu Gly Ala Asp Ser Lys Ser Trp Lys Ser

2255 2260 2265

Ile Val Val Thr Arg Met Tyr Glu Thr Lys Leu Lys Glu Leu Glu

2270 2275 2280

Thr Asp Ile Ala Lys Lys Asn Gln Ser Ile Thr Asp Leu Lys Gln

2285 2290 2295

Leu Val Lys Glu Ala Thr Glu Arg Glu Gln Lys Val Asn Lys Tyr

2300 2305 2310

Asn Glu Asp Leu Glu Gln Gln Ile Lys Ile Leu Lys His Val Pro

2315 2320 2325

Glu Gly Ala Glu Thr Glu Gln Gly Leu Lys Arg Glu Leu Gln Val

2330 2335 2340

Leu Arg Leu Ala Asn His Gln Leu Asp Lys Glu Lys Ala Glu Leu

2345 2350 2355

Ile His Gln Ile Glu Ala Asn Lys Asp Gln Ser Gly Ala Glu Ser

2360 2365 2370

Thr Ile Pro Asp Ala Asp Gln Leu Lys Glu Lys Ile Lys Asp Leu

2375 2380 2385

Glu Thr Gln Leu Lys Met Ser Asp Leu Glu Lys Gln His Leu Lys

2390 2395 2400

Glu Glu Ile Lys Lys Leu Lys Lys Glu Leu Glu Asn Phe Asp Pro

2405 2410 2415

Ser Phe Phe Glu Glu Ile Glu Asp Leu Lys Tyr Asn Tyr Lys Glu

2420 2425 2430

Glu Val Lys Lys Asn Ile Leu Leu Glu Glu Lys Val Lys Lys Leu

2435 2440 2445

Ser Glu Gln Leu Gly Val Glu Leu Thr Ser Pro Val Ala Ala Ser

2450 2455 2460

Glu Glu Phe Glu Asp Glu Glu Glu Ser Pro Val Asn Phe Pro Ile

2465 2470 2475

Tyr

<210> SEQ ID NO: 42

<211> LENGTH: 2625

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 42

actcgaccgg gctgcgctca ctgcccagcc ggggccccgg gagcctccag gctcccgccc 60

gccctgagct gcggcctccg catggagggg ccactcactc caccaccgct gcagggaggc 120

ggagccgccg ctgttccgga gcccggagcc cggcaacacc cgggacacga gacggcggcg 180

cagcggtaca gcgcccgact gctgcaggcc ggctacgagc ccgagagccc tagattggac 240

ctcgctacac acccgacgac accccgttca gaactatctt cagtggtctt actggcaggt 300

gttggtgtcc agatggatcg ccttcgcagg gctagcatgg cggactacct gatcagcggc 360

ggcaccggct acgtgcccga ggatgggctc accgcgcagc agctcttcgc cagcgccgac 420

ggcctcacct acaacgactt cctgattctc ccaggattca tagacttcat agctgatgag 480

gtggacctga cctcagccct gacccggaag atcacgctga agacgccact gatctcctcc 540

cccatggaca ctgtgacaga ggctgacatg gccattgcca tggctctgat gggaggtatt 600

ggtttcattc accacaactg caccccagag ttccaggcca acgaggtgcg gaaggtcaag 660

aagtttgaac agggcttcat cacggaccct gtggtgctga gcccctcgca cactgtgggc 720

gatgtgctgg aggccaagat gcggcatggc ttctctggca tccccatcac tgagacgggc 780

accatgggca gcaagctggt gggcatcgtc acctcccgag acatcgactt tcttgctgag 840

aaggaccaca ccaccctcct cagtgaggtg atgacgccaa ggattgaact ggtggtggct 900

ccagcaggtg tgacgttgaa agaggcaaat gagatcctgc agcgtagcaa gaaagggaag 960

ctgcctatcg tcaatgattg cgatgagctg gtggccatca tcgcccgcac cgacctgaag 1020

aagaaccgag actaccctct ggcctccaag gattcccaga agcagctgct ctgtggggca 1080

gctgtgggca cccgtgagga tgacaaatac cgtctggacc tgctcaccca ggcgggcgtc 1140

gacgtcatag tcttggactc gtcccaaggg aattcggtgt atcagatcgc catggtgcat 1200

tacatcaaac agaagtaccc ccacctccag gtgattgggg ggaacgtggt gacagcagcc 1260

caggccaaga acctgattga tgctggtgtg gacgggctgc gcgtgggcat gggctgcggc 1320

tccatctgca tcacccagga agtgatggcc tgtggtcggc cccagggcac tgctgtgtac 1380

aaggtggctg agtatgcccg gcgctttggt gtgcccatca tagccgatgg cggcatccag 1440

accgtgggac acgtggtcaa ggccctggcc cttggagcct ccacagtgat gatgggctcc 1500

ctgctggccg ccactacgga ggcccctggc gagtacttct tctcagacgg ggtgcggctc 1560

aagaagtacc ggggcatggg ctcactggat gccatggaga agagcagcag cagccagaaa 1620

cgatacttca gcgaggggga taaagtgaag atcgcgcagg gtgtctcggg ctccatccag 1680

gacaaaggat ccattcagaa gttcgtgccc tacctcatag caggcatcca acacggctgc 1740

caggatatcg gggcccgcag cctgtctgtc cttcggtcca tgatgtactc aggagagctc 1800

aagtttgaga agcggaccat gtcggcccag attgagggtg gtgtccatgg cctgcactct 1860

tacgaaaagc ggctgtactg aggacagcgg tggaggccga ggtggtggag gggatgcacc 1920

ccagtgtcca cttttgggca cagcctccct ccataactga gtggtccaca gatttgcact 1980

acgggttctc cagctccttt ccaggcagag aggaggggag gtcctgaggg gactgctgcc 2040

cctcactcgg catcccctgc agagtcagga ctgctcccgg ggccaggctg ccctgggagc 2100

ccccctccga gcccagccag ccaggctctc aggccctgcg cctgcctcag gtctttcttg 2160

ctgcagcctg ctccagcctg gcccccaccc caggggcagg cggcccctcc tggcttctcc 2220

tgtagggcac ctccctgccc ctagcctccc aggaaatggt gctctcctgg ccctgcctct 2280

ggcccttccc gggccgctgc ccctcagcca tgtggcactt ctgagctcct gacctaggcc 2340

aaggggaggt ctctgccccc ttccccggcc ctgggctacc cttgggtcct gctcctcagg 2400

ccgctcccct gtccctggcc atgggtagga gactgccctg gtcatggccg cctgcctgtc 2460

attcctgact caccaccgtc cccaggtgaa ccattcctcc cttctcctca gctgcagtcg 2520

aaggctttaa ctttgcacac ttgggatcac agttgcgtca ttgtgtatta aatacttgga 2580

ataaatcaag caggtctcaa cgcctccact aaaaaaaaaa aaaaa 2625

<210> SEQ ID NO: 43

<211> LENGTH: 599

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 43

Met Glu Gly Pro Leu Thr Pro Pro Pro Leu Gln Gly Gly Gly Ala Ala

1 5 10 15

Ala Val Pro Glu Pro Gly Ala Arg Gln His Pro Gly His Glu Thr Ala

20 25 30

Ala Gln Arg Tyr Ser Ala Arg Leu Leu Gln Ala Gly Tyr Glu Pro Glu

35 40 45

Ser Pro Arg Leu Asp Leu Ala Thr His Pro Thr Thr Pro Arg Ser Glu

50 55 60

Leu Ser Ser Val Val Leu Leu Ala Gly Val Gly Val Gln Met Asp Arg

65 70 75 80

Leu Arg Arg Ala Ser Met Ala Asp Tyr Leu Ile Ser Gly Gly Thr Gly

85 90 95

Tyr Val Pro Glu Asp Gly Leu Thr Ala Gln Gln Leu Phe Ala Ser Ala

100 105 110

Asp Gly Leu Thr Tyr Asn Asp Phe Leu Ile Leu Pro Gly Phe Ile Asp

115 120 125

Phe Ile Ala Asp Glu Val Asp Leu Thr Ser Ala Leu Thr Arg Lys Ile

130 135 140

Thr Leu Lys Thr Pro Leu Ile Ser Ser Pro Met Asp Thr Val Thr Glu

145 150 155 160

Ala Asp Met Ala Ile Ala Met Ala Leu Met Gly Gly Ile Gly Phe Ile

165 170 175

His His Asn Cys Thr Pro Glu Phe Gln Ala Asn Glu Val Arg Lys Val

180 185 190

Lys Lys Phe Glu Gln Gly Phe Ile Thr Asp Pro Val Val Leu Ser Pro

195 200 205

Ser His Thr Val Gly Asp Val Leu Glu Ala Lys Met Arg His Gly Phe

210 215 220

Ser Gly Ile Pro Ile Thr Glu Thr Gly Thr Met Gly Ser Lys Leu Val

225 230 235 240

Gly Ile Val Thr Ser Arg Asp Ile Asp Phe Leu Ala Glu Lys Asp His

245 250 255

Thr Thr Leu Leu Ser Glu Val Met Thr Pro Arg Ile Glu Leu Val Val

260 265 270

Ala Pro Ala Gly Val Thr Leu Lys Glu Ala Asn Glu Ile Leu Gln Arg

275 280 285

Ser Lys Lys Gly Lys Leu Pro Ile Val Asn Asp Cys Asp Glu Leu Val

290 295 300

Ala Ile Ile Ala Arg Thr Asp Leu Lys Lys Asn Arg Asp Tyr Pro Leu

305 310 315 320

Ala Ser Lys Asp Ser Gln Lys Gln Leu Leu Cys Gly Ala Ala Val Gly

325 330 335

Thr Arg Glu Asp Asp Lys Tyr Arg Leu Asp Leu Leu Thr Gln Ala Gly

340 345 350

Val Asp Val Ile Val Leu Asp Ser Ser Gln Gly Asn Ser Val Tyr Gln

355 360 365

Ile Ala Met Val His Tyr Ile Lys Gln Lys Tyr Pro His Leu Gln Val

370 375 380

Ile Gly Gly Asn Val Val Thr Ala Ala Gln Ala Lys Asn Leu Ile Asp

385 390 395 400

Ala Gly Val Asp Gly Leu Arg Val Gly Met Gly Cys Gly Ser Ile Cys

405 410 415

Ile Thr Gln Glu Val Met Ala Cys Gly Arg Pro Gln Gly Thr Ala Val

420 425 430

Tyr Lys Val Ala Glu Tyr Ala Arg Arg Phe Gly Val Pro Ile Ile Ala

435 440 445

Asp Gly Gly Ile Gln Thr Val Gly His Val Val Lys Ala Leu Ala Leu

450 455 460

Gly Ala Ser Thr Val Met Met Gly Ser Leu Leu Ala Ala Thr Thr Glu

465 470 475 480

Ala Pro Gly Glu Tyr Phe Phe Ser Asp Gly Val Arg Leu Lys Lys Tyr

485 490 495

Arg Gly Met Gly Ser Leu Asp Ala Met Glu Lys Ser Ser Ser Ser Gln

500 505 510

Lys Arg Tyr Phe Ser Glu Gly Asp Lys Val Lys Ile Ala Gln Gly Val

515 520 525

Ser Gly Ser Ile Gln Asp Lys Gly Ser Ile Gln Lys Phe Val Pro Tyr

530 535 540

Leu Ile Ala Gly Ile Gln His Gly Cys Gln Asp Ile Gly Ala Arg Ser

545 550 555 560

Leu Ser Val Leu Arg Ser Met Met Tyr Ser Gly Glu Leu Lys Phe Glu

565 570 575

Lys Arg Thr Met Ser Ala Gln Ile Glu Gly Gly Val His Gly Leu His

580 585 590

Ser Tyr Glu Lys Arg Leu Tyr

595

<210> SEQ ID NO: 44

<211> LENGTH: 2981

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 44

gctgggtaaa tcccagagtc tcagccgcct aagtgtcttc cccggaggtg agattatctc 60

cgcctgtgct ggacacctcc ctttctcctg cagccatgga tgccgctctg ctcctgaacg 120

tggaaggggt caagaaaacc attctgcacg ggggcacggg cgagctccca aacttcatca 180

ccggatcccg agtgatcttt catttccgca ccatgaaatg tgatgaggag cggacagtca 240

ttgacgacag tcggcaggtg ggccagccca tgcacatcat catcggaaac atgttcaagc 300

tcgaggtctg ggagatcctg cttacctcca tgcgggtgca cgaggtggcc gagttctggt 360

gcgacaccat ccacacgggg gtctacccca tcctatcccg gagcctgagg cagatggccc 420

agggcaagga ccccacagag tggcacgtgc acacgtgcgg gctggccaac atgttcgcct 480

accacacgct gggctacgag gacctggacg agctgcagaa ggagcctcag cctctggtct 540

ttgtgatcga gctgctgcag gttgatgccc cgagtgatta ccagagggag acctggaacc 600

tgagcaatca tgagaagatg aaggcggtgc ccgtcctcca cggagaggga aatcggctct 660

tcaagctggg ccgctacgag gaggcctctt ccaagtacca ggaggccatc atctgcctaa 720

ggaacctgca gaccaaggag aagccatggg aggtgcagtg gctgaagctg gagaagatga 780

tcaatactct gatcctcaac tactgccagt gcctgctgaa gaaggaggag tactatgagg 840

tgctggagca caccagtgat attctccggc accacccagg catcgtgaag gcctactacg 900

tgcgtgcccg ggctcacgca gaggtgtgga atgaggccga ggccaaggcg gacctccaga 960

aagtgctgga gctggagccg tccatgcaga aggcggtgcg cagggagctg aggctgctgg 1020

agaaccgcat ggcggagaag caggaggagg agcggctgcg ctgccggaac atgctgagcc 1080

agggtgccac gcagcctccc gcagagccac ccacagagcc acccgcacag tcatccacag 1140

agccacctgc agagccaccc acagcaccat ctgcagagct gtccgcaggg ccccctgcag 1200

agccagccac agagccaccc ccgtccccag ggcactcgct gcagcactga gccccctgag 1260

gcccacagcc acccaggcag ggagcaagtg gcctggtcac ttctggttcg attgaccagg 1320

atcgtggtgt cactttttaa aatttaaaat taatttttga aatcaaagtc agacacaccc 1380

atggtaaaaa aaaaaaaaaa aacaatccca agggtacaga agagcttatg aataaaagta 1440

gttttctcct ctacccctct cattccttcc gtgccatggt tttaattgac cctgttttta 1500

attcttctgg tagttttctc tatttccaag taatctgttt aaatcagttt ctagatttta 1560

ccccatgtca atgacaaatg aggatttgat gctctgatcc tttctcatgc ctgatacccc 1620

tccctgtctc cccattttgg atagttacat ttgggggtca tctcggtgat ttttgtaact 1680

ttacgcagga cacttagagc tctctagaat cccactgact ttagtgggtc ttgatgtagg 1740

gtgggcaagc cccgacactg gagcttagcc tgagagggtt cttggcctcc cccaggaaag 1800

atttcaaagg caagcgccag tggtagggta gaagaaaaca gctgtggtcg ggcacggtgg 1860

ctcacgccta taatcccagc actttgggag gccgaggcgg gtggatcacc tgaggtcagg 1920

agttccagac cagcctggcc aacatggtga aacctcatct ctactaaaaa tacaaaaaaa 1980

ctagctgggc gtggtggcgg gcgcctataa tcccagctac ttgggaggct gaggcaggag 2040

aattgattga acctgggagg cggaggttgc agtgagccaa gatcacgtca ttgcactcca 2100

gcctggtcaa caagagtaaa acttcatctc aaaaaacaaa acaaaacaaa aacaacaaca 2160

aaaaacaaaa gaaaaacaaa caaaaccaaa accaaaacag ctgtattgaa gctgcagtgt 2220

tgcagctctg tgactgccct gcagagcagg gctaccccat aggcagcgag cagcagctca 2280

gggcagttct gcagtcagat ttatacccac ttttaattac atgtagatta aggagctgca 2340

tatacaaaga tttctaggga aggagtagta acttctgggt cctggggtct ttgccacgga 2400

acagggcagt atgccagggt gttgccacgg caatggtaaa ctgacatggc accctggggg 2460

tcatgcctta gggaaagccg cttccactcg cccctgtttt agctcatctt caagttagtc 2520

tggtgtccaa gctccaccgc ctgcctcagt ctggtgacct ccttctgtgt ctgatgagca 2580

tggcagcgtt gggaccttcc ccttccaact ctctccctcc tcttcgtcct ccctaaagga 2640

cgggtacgag gaggggctat cacgccagcg acatcctcta gcaccaccca ggtgtgtggg 2700

gtggggcagg ggggcgacga agtatccagc ccagggccac gtagtcaact gccaagggct 2760

tcctgggctt ctcttctgcc ccagagcttg tctccaccca gcaggggttc ccccagcgct 2820

aactgtatcc ctaaagttct gatgtacttt acttttccat cttccttgtt gttaacatct 2880

accttctgct ctgtaagcaa aactaaatct tctgtgcttt gtccataggt tgattctaca 2940

atctgaaaat caataaacag catttgcatg aaaaaaaaaa a 2981

<210> SEQ ID NO: 45

<211> LENGTH: 384

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 45

Met Asp Ala Ala Leu Leu Leu Asn Val Glu Gly Val Lys Lys Thr Ile

1 5 10 15

Leu His Gly Gly Thr Gly Glu Leu Pro Asn Phe Ile Thr Gly Ser Arg

20 25 30

Val Ile Phe His Phe Arg Thr Met Lys Cys Asp Glu Glu Arg Thr Val

35 40 45

Ile Asp Asp Ser Arg Gln Val Gly Gln Pro Met His Ile Ile Ile Gly

50 55 60

Asn Met Phe Lys Leu Glu Val Trp Glu Ile Leu Leu Thr Ser Met Arg

65 70 75 80

Val His Glu Val Ala Glu Phe Trp Cys Asp Thr Ile His Thr Gly Val

85 90 95

Tyr Pro Ile Leu Ser Arg Ser Leu Arg Gln Met Ala Gln Gly Lys Asp

100 105 110

Pro Thr Glu Trp His Val His Thr Cys Gly Leu Ala Asn Met Phe Ala

115 120 125

Tyr His Thr Leu Gly Tyr Glu Asp Leu Asp Glu Leu Gln Lys Glu Pro

130 135 140

Gln Pro Leu Val Phe Val Ile Glu Leu Leu Gln Val Asp Ala Pro Ser

145 150 155 160

Asp Tyr Gln Arg Glu Thr Trp Asn Leu Ser Asn His Glu Lys Met Lys

165 170 175

Ala Val Pro Val Leu His Gly Glu Gly Asn Arg Leu Phe Lys Leu Gly

180 185 190

Arg Tyr Glu Glu Ala Ser Ser Lys Tyr Gln Glu Ala Ile Ile Cys Leu

195 200 205

Arg Asn Leu Gln Thr Lys Glu Lys Pro Trp Glu Val Gln Trp Leu Lys

210 215 220

Leu Glu Lys Met Ile Asn Thr Leu Ile Leu Asn Tyr Cys Gln Cys Leu

225 230 235 240

Leu Lys Lys Glu Glu Tyr Tyr Glu Val Leu Glu His Thr Ser Asp Ile

245 250 255

Leu Arg His His Pro Gly Ile Val Lys Ala Tyr Tyr Val Arg Ala Arg

260 265 270

Ala His Ala Glu Val Trp Asn Glu Ala Glu Ala Lys Ala Asp Leu Gln

275 280 285

Lys Val Leu Glu Leu Glu Pro Ser Met Gln Lys Ala Val Arg Arg Glu

290 295 300

Leu Arg Leu Leu Glu Asn Arg Met Ala Glu Lys Gln Glu Glu Glu Arg

305 310 315 320

Leu Arg Cys Arg Asn Met Leu Ser Gln Gly Ala Thr Gln Pro Pro Ala

325 330 335

Glu Pro Pro Thr Glu Pro Pro Ala Gln Ser Ser Thr Glu Pro Pro Ala

340 345 350

Glu Pro Pro Thr Ala Pro Ser Ala Glu Leu Ser Ala Gly Pro Pro Ala

355 360 365

Glu Pro Ala Thr Glu Pro Pro Pro Ser Pro Gly His Ser Leu Gln His

370 375 380

<210> SEQ ID NO: 46

<211> LENGTH: 1934

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 46

gggcacaagc aatcctccct tctcagcttc ctgagtggcc aggactacag aggactgtat 60

gctgttctta aggactctct gcttcctgga caagctcaag ctaaggacta catctcccag 120

caggctgtgc tctgacagct cttggattta aataggattc tgggctctgc tcagagtcag 180

gctgctgctc agcacccagg acggagagga gcagagaagc agcagaagca gccaagagct 240

ggagccagac caggaacctg agccagagct ggggttgaag ctggagcagc agcaaaagca 300

acagcagcta cagaagttgg aacgatgctg gtcaccttgg gactgctcac ctccttcttc 360

tcgttcctgt atatggtagc tccatccatc aggaagttct ttgctggtgg agtgtgtaga 420

acaaatgtgc agcttcctgg caaggtagtg gtgatcactg gcgccaacac gggcattggc 480

aaggagacgg ccagagagct cgctagccga ggagcccgag tctatattgc ctgcagagat 540

gtactgaagg gggagtctgc tgccagtgaa atccgagtgg atacaaagaa ctcccaggtg 600

ctggtgcgga aattggacct atccgacacc aaatctatcc gagcctttgc tgagggcttt 660

ctggcagagg aaaagcagct ccatattctg atcaacaatg cgggagtaat gatgtgtcca 720

tattccaaga cagctgatgg ctttgaaacc cacctgggag tcaaccacct gggccacttc 780

ctcctcacct acctgctcct ggagcggcta aaggtgtctg cccctgcacg ggtggttaat 840

gtgtcctcgg tggctcacca cattggcaag attcccttcc acgacctcca gagcgagaag 900

cgctacagca ggggttttgc ctattgccac agcaagctgg ccaatgtgct ttttactcgt 960

gagctggcca agaggctcca aggcaccggg gtcaccacct acgcagtgca cccaggcgtc 1020

gtccgctctg agctggtccg gcactcctcc ctgctctgcc tgctctggcg gctcttctcc 1080

ccctttgtca agacggcacg ggagggggcg cagaccagcc tgcactgcgc cctggctgag 1140

ggcctggagc ccctgagtgg caagtacttc agtgactgca agaggacctg ggtgtctcca 1200

agggcccgaa ataacaaaac agctgagcgc ctatggaatg tcagctgtga gcttctagga 1260

atccggtggg agtagctggt ggaagagctg cagctttatc aggcccaatc catgccataa 1320

tgaacaggga ccaaggagaa ggccaaccct aaaggattgt cctcttggcc agctggtgct 1380

gcgaatcctg cctgctctga tcctcttgac ccttctggga atgtttgcac acctgacact 1440

cttgtgagac tggcttatgg catgagttgt ggacacctat agagtgttct tctctaagac 1500

ctggaaagtc agcaaccctc tgggggcagc aggactgggc agatcccagg ctgggcatgg 1560

gggtggcaga agagcccgag aaattgggtc agttccctca tcagcaccag aggctcagct 1620

gaggcaagaa gagcaccatc actgcctatt tctaggggct atacactcca actcttggtt 1680

gatctctttc tttttaaaaa tatttgccac caccctggag tctagaccaa cacacaaaga 1740

tcctggctaa ccctggccta tttagattcc ttcctctcac ctggaccttc ccatttcaat 1800

catgcagatg gtttcttttt gtaaagagtt ccgtttgcct ttcaattttt agagaaaata 1860

aagactgcat tcatctcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1920

aaaaaaaaaa aaaa 1934

<210> SEQ ID NO: 47

<211> LENGTH: 316

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 47

Met Leu Val Thr Leu Gly Leu Leu Thr Ser Phe Phe Ser Phe Leu Tyr

1 5 10 15

Met Val Ala Pro Ser Ile Arg Lys Phe Phe Ala Gly Gly Val Cys Arg

20 25 30

Thr Asn Val Gln Leu Pro Gly Lys Val Val Val Ile Thr Gly Ala Asn

35 40 45

Thr Gly Ile Gly Lys Glu Thr Ala Arg Glu Leu Ala Ser Arg Gly Ala

50 55 60

Arg Val Tyr Ile Ala Cys Arg Asp Val Leu Lys Gly Glu Ser Ala Ala

65 70 75 80

Ser Glu Ile Arg Val Asp Thr Lys Asn Ser Gln Val Leu Val Arg Lys

85 90 95

Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Glu Gly Phe

100 105 110

Leu Ala Glu Glu Lys Gln Leu His Ile Leu Ile Asn Asn Ala Gly Val

115 120 125

Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Thr His Leu

130 135 140

Gly Val Asn His Leu Gly His Phe Leu Leu Thr Tyr Leu Leu Leu Glu

145 150 155 160

Arg Leu Lys Val Ser Ala Pro Ala Arg Val Val Asn Val Ser Ser Val

165 170 175

Ala His His Ile Gly Lys Ile Pro Phe His Asp Leu Gln Ser Glu Lys

180 185 190

Arg Tyr Ser Arg Gly Phe Ala Tyr Cys His Ser Lys Leu Ala Asn Val

195 200 205

Leu Phe Thr Arg Glu Leu Ala Lys Arg Leu Gln Gly Thr Gly Val Thr

210 215 220

Thr Tyr Ala Val His Pro Gly Val Val Arg Ser Glu Leu Val Arg His

225 230 235 240

Ser Ser Leu Leu Cys Leu Leu Trp Arg Leu Phe Ser Pro Phe Val Lys

245 250 255

Thr Ala Arg Glu Gly Ala Gln Thr Ser Leu His Cys Ala Leu Ala Glu

260 265 270

Gly Leu Glu Pro Leu Ser Gly Lys Tyr Phe Ser Asp Cys Lys Arg Thr

275 280 285

Trp Val Ser Pro Arg Ala Arg Asn Asn Lys Thr Ala Glu Arg Leu Trp

290 295 300

Asn Val Ser Cys Glu Leu Leu Gly Ile Arg Trp Glu

305 310 315

<210> SEQ ID NO: 48

<211> LENGTH: 4729

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 48

agtctaggcc tccgcctccg ttaccctgga gcccaggtta ccgccgctgc cacccaggag 60

ccccgatcct cgcctctgtc ccatccttgt gttcaaacct cccgcatctc ggcaacctcg 120

gcacccgccc ggcagcctcc gcaggaacca ggcacccgct ctttggcggt cagacgccga 180

ggccccagct gggagtttgg tcctaagagg gaaggcaagg aggcgggacg ccgcatcggc 240

tctgctgaag agcctgcggg ttggaggtgg gctttgaagt gggcgtggag acggcggggg 300

aggtggaggt gcgagtataa atgatcaacc agaaattatc ttcaaaggaa taaaaccaga 360

agtatgtaaa taaaaagccc aagataaaga aacagaaaag ctgacactac atgaagcaga 420

gggcaaaaaa gtttatcttc tggatgccaa tgtgaattgt ggtctacaaa tacattgtgg 480

agaaaataga ttgcacagaa atgaatatta tcaggatctg aagactgtga aaatgttttt 540

cagtattgtc atagtctcct ctggagaaaa taatctgtga aattatgtga atagagacca 600

tttttcaaaa caatggggga aagagcagga agtccaggta ctgatcaaga aagaaaggca 660

ggcaaacacc attattctta cttatctgat tttgaaacgc cacagtcttc tggccgatca 720

tcgctggtca gttcttcacc tgcaagtgtt aggagaaaaa atcctaaaag acaaacttca 780

gatggccaag tacatcacca agcccctcgg aaaccaagcc ctaagggtct accaaacaga 840

aagggagtcc gagtgggatt tcgctcccag agcctcaata gagagccact tcggaaagat 900

actgatcttg ttacaaaacg gattctgtct gcaagactgc taaaaatcaa tgagttgcag 960

aatgaagtat ctgaactcca ggtcaagtta gctgagctgc taaaagaaaa taaatctttg 1020

aaaaggcttc agtacagaca ggagaaagcc ctgaataagt ttgaagatgc cgaaaatgaa 1080

atctcacaac ttatatttcg tcataacaat gagattacag cactcaaaga acgcttaaga 1140

aaatctcaag agaaagaacg ggcaactgag aaaagggtaa aagatacaga aagtgaacta 1200

tttaggacaa aattttcctt acagaaactg aaagagatct ctgaagctag acacctacct 1260

gaacgagatg atttggcaaa gaaactagtt tcagcagagt taaagttaga tgacaccgag 1320

agaagaatta aggagctatc gaaaaacctt gaactgagta ctaacagttt ccaacgacag 1380

ttgcttgctg aaaggaaaag ggcatatgag gctcatgatg aaaataaagt tcttcaaaag 1440

gaggtacagc gactatatca caaattaaag gaaaaggaga gagaactgga tataaaaaat 1500

atatattcta atcgtctgcc aaagtcctct ccaaataaag agaaagaact tgcattaaga 1560

aaaaatgctg catgccagag tgattttgca gacctgtgta caaaaggagt acaaaccatg 1620

gaagacttca agccagaaga atatccttta actccagaaa caattatgtg ttacgaaaac 1680

aaatgggaag aaccaggaca tcttactttg gacttgcaat ctcaaaagca agacaggcat 1740

ggagaagcag ggattctaaa cccaattatg gaaagagaag aaaaatttgt tacagatgaa 1800

gaactccatg tcgtaaaaca ggaggttgaa aagctggagg atgaatggga aagagaagaa 1860

cttgataaaa agcaaaaaga aaaggcatct ttactggaaa gagaagaaaa gccagagtgg 1920

gaaactggaa ggtaccaact aggaatgtat ccaattcaga atatggataa attgcaagga 1980

gaggaagaag aaagactgaa gagagaaatg ctacttgcta aactgaatga aattgacaga 2040

gaactccaag attctcgaaa tctaaaatac cctgttttgc cattgttacc tgattttgaa 2100

tcaaaactac actccccaga gagaagcccc aaaacataca ggttctctga atcctcagag 2160

agattattta atgggcatca tttgcaagac atcagtttct caactccaaa aggagaaggt 2220

cagaattcag gaaatgttag aagtccagcc tcccctaatg agttcgcatt tggtagctac 2280

gtgccttcgt ttgcaaaaac atcagagagg tcaaatccat ttagtcaaaa aagtagtttt 2340

ttggatttcc aaagaaacag tatggaaaaa cttagtaaag atggtgtaga tttaattaca 2400

agaaaagaga aaaaagctaa tttgatggaa cagttatttg gtgccagtgg tagcagcacc 2460

atttcctcca aaagcagtga cccaaattct gtggcttcca gtaaaggaga cattgaccct 2520

ctaaattttc tccctgggaa taaaggcagc agagatcaag aacatgatga agatgaaggc 2580

tttttcctca gtgaaggaag aagttttaat ccaaataggc accgattaaa acatgcagac 2640

gataaaccag cagtaaaagc agctgattct gtagaagatg aaattgaaga agtagcactg 2700

agatgactga ctagagtata cattttttct aattgtaaat attgaaatat tttaatacag 2760

tatttattat aaacatttag actttttaat gctaaaatgt ccttattaag gaatgatttt 2820

taatagctaa atacaatgca gttaaaaaga agtagatcat acatacacca catagatagt 2880

ttgccaagaa tgaaggaggc ttttttgaat gaaaccaaaa ataaaaatat gtcttgaaaa 2940

atgaaataga ttttaactct tcatccagtg ctatggcaag tttaactgca ctggaggtgg 3000

tattcctttt ctacttttat tcctatttat gtatttattt ttaatcatat tctcactgtg 3060

ctaaatacag tcttcccact aattgttgaa tgaaaattaa gggtgaaagt ctgtgttggg 3120

aagtgtagct ccggatggtg gagaaccagt gcttcttagg agcccttccc tttatggata 3180

gggccagggg tccctatctt acgtggcagt cctaagctac tcttgagtga tagcagtcac 3240

aacattggga tttcccattc ctctgaaagt acccacagct aaacactact catttcccaa 3300

tttcagtatt tactgaaatc acttacctac aattctgtta gaatattatg ttgagttcgg 3360

aagacatttc tctgtttgca aggacagtta gttgctctct gtcatagccc gcagaagctt 3420

ggctacagtg taattcctct ccttgttctc ctacactctt tgtatctcag tgactgggtg 3480

taagatttca tgccaaatgc aaggaatagt ggaaatacat accaactgca aagaatagaa 3540

aaactttatc ccaatatatt atagaaagat cttcagttca attatgtcca gagtaatata 3600

atttggcaat gttaatgctt ttaagatttg aacttgtcct caaaccaagg agacaacaat 3660

agtgtaatac tattggactt acaggattag ttttaaagca actttgaata gaagtgtttc 3720

agacatagga cttctgcctt gttgactaga gtggatagtt ttctgtttaa atgcattggt 3780

cttttggctg tttgtaattc acttcagctt atagagaagt tgatgacctt ggatcatgct 3840

gggtatgatt ggtctttaaa aagcagtaat ataccaccag cccaaggaga aaacattgtt 3900

aaaatgaaga gtggtggaaa tagtgtgttg ggaagaataa aaaatttaga ttggcactta 3960

ttctaaagtg agctgttttt ttcaagaatt tactagcatt tgctcgtagt atgatttctg 4020

acgccagtca tatatactga tgaggggaag gagttactgt gttattctga gttcttataa 4080

atgcatatta ttgaatttca ttgcatgact atttgtcaag acttacctgg ttaggtctcc 4140

aattaaaaga tgtaccacct gtcatcttct aaattgtgtt cctttcattt attgggaaca 4200

gaatctctca aaagtgctaa actatattaa aaagttttct taatagattt gtatgtctga 4260

tatgtataac catttactat aatatgttgc aaatcattct aatatatgta aaacaatatt 4320

atttgtaatg cagttattgg taaaatatta tgtaatgtta attttgttcc tagctgctaa 4380

tttttctgcc aaaagtattc taattttcag gttgttttaa aggcttttaa aactttttag 4440

ttaagttttt tattcacgtc atttaaatta gttttttgct ttttttctac ctgataatct 4500

ctttaacaag atgcaacaag acagaattat taaaattaaa cctaaagtta agttacagat 4560

ttaaaggcat tatgatatta agcattaaaa ttggagatta aaatgtacaa aacagggttt 4620

tccttatgaa caaaccttac agggtaaatt gttttttttt ctaaatgtca ttaaatttat 4680

ttgtactcag aactgttact aataaaaatt aaaaatgcaa aaaaaaaaa 4729

<210> SEQ ID NO: 49

<211> LENGTH: 697

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 49

Met Gly Glu Arg Ala Gly Ser Pro Gly Thr Asp Gln Glu Arg Lys Ala

1 5 10 15

Gly Lys His His Tyr Ser Tyr Leu Ser Asp Phe Glu Thr Pro Gln Ser

20 25 30

Ser Gly Arg Ser Ser Leu Val Ser Ser Ser Pro Ala Ser Val Arg Arg

35 40 45

Lys Asn Pro Lys Arg Gln Thr Ser Asp Gly Gln Val His His Gln Ala

50 55 60

Pro Arg Lys Pro Ser Pro Lys Gly Leu Pro Asn Arg Lys Gly Val Arg

65 70 75 80

Val Gly Phe Arg Ser Gln Ser Leu Asn Arg Glu Pro Leu Arg Lys Asp

85 90 95

Thr Asp Leu Val Thr Lys Arg Ile Leu Ser Ala Arg Leu Leu Lys Ile

100 105 110

Asn Glu Leu Gln Asn Glu Val Ser Glu Leu Gln Val Lys Leu Ala Glu

115 120 125

Leu Leu Lys Glu Asn Lys Ser Leu Lys Arg Leu Gln Tyr Arg Gln Glu

130 135 140

Lys Ala Leu Asn Lys Phe Glu Asp Ala Glu Asn Glu Ile Ser Gln Leu

145 150 155 160

Ile Phe Arg His Asn Asn Glu Ile Thr Ala Leu Lys Glu Arg Leu Arg

165 170 175

Lys Ser Gln Glu Lys Glu Arg Ala Thr Glu Lys Arg Val Lys Asp Thr

180 185 190

Glu Ser Glu Leu Phe Arg Thr Lys Phe Ser Leu Gln Lys Leu Lys Glu

195 200 205

Ile Ser Glu Ala Arg His Leu Pro Glu Arg Asp Asp Leu Ala Lys Lys

210 215 220

Leu Val Ser Ala Glu Leu Lys Leu Asp Asp Thr Glu Arg Arg Ile Lys

225 230 235 240

Glu Leu Ser Lys Asn Leu Glu Leu Ser Thr Asn Ser Phe Gln Arg Gln

245 250 255

Leu Leu Ala Glu Arg Lys Arg Ala Tyr Glu Ala His Asp Glu Asn Lys

260 265 270

Val Leu Gln Lys Glu Val Gln Arg Leu Tyr His Lys Leu Lys Glu Lys

275 280 285

Glu Arg Glu Leu Asp Ile Lys Asn Ile Tyr Ser Asn Arg Leu Pro Lys

290 295 300

Ser Ser Pro Asn Lys Glu Lys Glu Leu Ala Leu Arg Lys Asn Ala Ala

305 310 315 320

Cys Gln Ser Asp Phe Ala Asp Leu Cys Thr Lys Gly Val Gln Thr Met

325 330 335

Glu Asp Phe Lys Pro Glu Glu Tyr Pro Leu Thr Pro Glu Thr Ile Met

340 345 350

Cys Tyr Glu Asn Lys Trp Glu Glu Pro Gly His Leu Thr Leu Asp Leu

355 360 365

Gln Ser Gln Lys Gln Asp Arg His Gly Glu Ala Gly Ile Leu Asn Pro

370 375 380

Ile Met Glu Arg Glu Glu Lys Phe Val Thr Asp Glu Glu Leu His Val

385 390 395 400

Val Lys Gln Glu Val Glu Lys Leu Glu Asp Glu Trp Glu Arg Glu Glu

405 410 415

Leu Asp Lys Lys Gln Lys Glu Lys Ala Ser Leu Leu Glu Arg Glu Glu

420 425 430

Lys Pro Glu Trp Glu Thr Gly Arg Tyr Gln Leu Gly Met Tyr Pro Ile

435 440 445

Gln Asn Met Asp Lys Leu Gln Gly Glu Glu Glu Glu Arg Leu Lys Arg

450 455 460

Glu Met Leu Leu Ala Lys Leu Asn Glu Ile Asp Arg Glu Leu Gln Asp

465 470 475 480

Ser Arg Asn Leu Lys Tyr Pro Val Leu Pro Leu Leu Pro Asp Phe Glu

485 490 495

Ser Lys Leu His Ser Pro Glu Arg Ser Pro Lys Thr Tyr Arg Phe Ser

500 505 510

Glu Ser Ser Glu Arg Leu Phe Asn Gly His His Leu Gln Asp Ile Ser

515 520 525

Phe Ser Thr Pro Lys Gly Glu Gly Gln Asn Ser Gly Asn Val Arg Ser

530 535 540

Pro Ala Ser Pro Asn Glu Phe Ala Phe Gly Ser Tyr Val Pro Ser Phe

545 550 555 560

Ala Lys Thr Ser Glu Arg Ser Asn Pro Phe Ser Gln Lys Ser Ser Phe

565 570 575

Leu Asp Phe Gln Arg Asn Ser Met Glu Lys Leu Ser Lys Asp Gly Val

580 585 590

Asp Leu Ile Thr Arg Lys Glu Lys Lys Ala Asn Leu Met Glu Gln Leu

595 600 605

Phe Gly Ala Ser Gly Ser Ser Thr Ile Ser Ser Lys Ser Ser Asp Pro

610 615 620

Asn Ser Val Ala Ser Ser Lys Gly Asp Ile Asp Pro Leu Asn Phe Leu

625 630 635 640

Pro Gly Asn Lys Gly Ser Arg Asp Gln Glu His Asp Glu Asp Glu Gly

645 650 655

Phe Phe Leu Ser Glu Gly Arg Ser Phe Asn Pro Asn Arg His Arg Leu

660 665 670

Lys His Ala Asp Asp Lys Pro Ala Val Lys Ala Ala Asp Ser Val Glu

675 680 685

Asp Glu Ile Glu Glu Val Ala Leu Arg

690 695

<210> SEQ ID NO: 50

<211> LENGTH: 3771

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pR2.1 from ATG to L-opsin gene

<400> SEQENCE: 50

ccagggtgag attatgaggc tgagctgaga atatcaagac tgtaccgagt agggggcctt 60

ggcaagtgtg gagagcccgg cagctggggc agagggcgga gtacggtgtg cgtttacgga 120

cctcttcaaa cgaggtagga aggtcagaag tcaaaaaggg aacaaatgat gtttaaccac 180

acaaaaatga aaatccaatg gttggatatc cattccaaat acacaaaggc aacggataag 240

tgatccgggc caggcacaga aggccatgca cccgtaggat tgcactcaga gctcccaaat 300

gcataggaat agaagggtgg gtgcaggagg ctgaggggtg gggaaagggc atgggtgttt 360

catgaggaca gagcttccgt ttcatgcaat gaaaagagtt tggagacgga tggtggtgac 420

tggactatac acttacacac ggtagcgatg gtacactttg tattatgtat attttaccac 480

gatcttttta aagtgtcaaa ggcaaatggc caaatggttc cttgtcctat agctgtagca 540

gccatcggct gttagtgaca aagcccctga gtcaagatga cagcagcccc cataactcct 600

aatcggctct cccgcgtgga gtcatttagg agtagtcgca ttagagacaa gtccaacatc 660

taatcttcca ccctggccag ggccccagct ggcagcgagg gtgggagact ccgggcagag 720

cagagggcgc tgacattggg gcccggcctg gcttgggtcc ctctggcctt tccccagggg 780

ccctctttcc ttggggcttt cttgggccgc cactgctccc gctcctctcc ccccatccca 840

ccccctcacc ccctcgttct tcatatcctt ctctagtgct ccctccactt tcatccaccc 900

ttctgcaaga gtgtgggacc acaaatgagt tttcacctgg cctggggaca cacgtgcccc 960

cacaggtgct gagtgacttt ctaggacagt aatctgcttt aggctaaaat gggacttgat 1020

cttctgttag ccctaatcat caattagcag agccggtgaa ggtgcagaac ctaccgcctt 1080

tccaggcctc ctcccacctc tgccacctcc actctccttc ctgggatgtg ggggctggca 1140

cacgtgtggc ccagggcatt ggtgggattg cactgagctg ggtcattagc gtaatcctgg 1200

acaagggcag acagggcgag cggagggcca gctccggggc tcaggcaagg ctgggggctt 1260

cccccagaca ccccactcct cctctgctgg acccccactt catagggcac ttcgtgttct 1320

caaagggctt ccaaatagca tggtggcctt ggatgcccag ggaagcctca gagttgctta 1380

tctccctcta gacagaaggg gaatctcggt caagagggag aggtcgccct gttcaaggcc 1440

acccagccag ctcatggcgg taatgggaca aggctggcca gccatcccac cctcagaagg 1500

gacccggtgg ggcaggtgat ctcagaggag gctcacttct gggtctcaca ttcttggatc 1560

cggttccagg cctcggccct aaatagtctc cctgggcttt caagagaacc acatgagaaa 1620

ggaggattcg ggctctgagc agtttcacca cccacccccc agtctgcaaa tcctgacccg 1680

tgggtccacc tgccccaaag gcggacgcag gacagtagaa gggaacagag aacacataaa 1740

cacagagagg gccacagcgg ctcccacagt caccgccacc ttcctggcgg ggatgggtgg 1800

ggcgtctgag tttggttccc agcaaatccc tctgagccgc ccttgcgggc tcgcctcagg 1860

agcaggggag caagaggtgg gaggaggagg tctaagtccc aggcccaatt aagagatcag 1920

gtagtgtagg gtttgggagc ttttaaggtg aagaggcccg ggctgatccc acaggccagt 1980

ataaagcgcc gtgaccctca ggtgatgcgc cagggccggc tgccgtcggg gacagggctt 2040

tccatagcca tgctagagga tccggtactc gaggaactga aaaaccagaa agttaactgg 2100

taagtttagt ctttttgtct tttatttcag gtcccggatc cggtggtggt gcaaatcaaa 2160

gaactgctcc tcagtggatg ttgcctttac ttctaggcct gtacggaagt gttacttctg 2220

ctctaaaagc tgcggaattg tacccgcggc cgcgggacag ggctttccat agccatggcc 2280

cagcagtgga gcctccaaag gctcgcaggc cgccatccgc aggacagcta tgaggacagc 2340

acccagtcca gcatcttcac ctacaccaac agcaactcca ccagaggccc cttcgaaggc 2400

ccgaattacc acatcgctcc cagatgggtg taccacctca ccagtgtctg gatgatcttt 2460

gtggtcactg catccgtctt cacaaatggg cttgtgctgg cggccaccat gaagttcaag 2520

aagctgcgcc acccgctgaa ctggatcctg gtgaacctgg cggtcgctga cctagcagag 2580

accgtcatcg ccagcactat cagcattgtg aaccaggtct ctggctactt cgtgctgggc 2640

caccctatgt gtgtcctgga gggctacacc gtctccctgt gtgggatcac aggtctctgg 2700

tctctggcca tcatttcctg ggagagatgg atggtggtct gcaagccctt tggcaatgtg 2760

agatttgatg ccaagctggc catcgtgggc attgccttct cctggatctg gtctgctgtg 2820

tggacagccc cgcccatctt tggttggagc aggtactggc cccacggcct gaagacttca 2880

tgcggcccag acgtgttcag cggcagctcg taccccgggg tgcagtctta catgattgtc 2940

ctcatggtca cctgctgcat catcccactc gctatcatca tgctctgcta cctccaagtg 3000

tggctggcca tccgagcggt ggcaaagcag cagaaagagt ctgaatccac ccagaaggca 3060

gagaaggaag tgacgcgcat ggtggtggtg atgatctttg cgtactgcgt ctgctgggga 3120

ccctacacct tcttcgcatg ctttgctgct gccaaccctg gttacgcctt ccaccctttg 3180

atggctgccc tgccggccta ctttgccaaa agtgccacta tctacaaccc cgttatctat 3240

gtctttatga accggcagtt tcgaaactgc atcttgcagc ttttcgggaa gaaggttgac 3300

gatggctctg aactctccag cgcctccaaa acggaggtct caactgtgtc ctcgacccag 3360

gtagggccta actgaggtct gcctcctacc catcccgccc accggggctt tggccacctc 3420

tcctttcccc ctccttctcc atccctgtaa aataaatgta atttatcttt gccaaaacca 3480

aaaaaaacgg aattcgtaat catgtcatag ctgtttcctg tgtgaaattg ttatccgctc 3540

acaattccac acaacatacg aggcggccgc gcggatccag acatgataag atacattgat 3600

gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt 3660

gatgctattg ctttatttgt aaccattata agctgcaata aacaagttaa caacaacaat 3720

tgcattcatt ttatgtttca ggttcagggg gaggtgtggg aggtttttta g 3771

<210> SEQ ID NO: 51

<211> LENGTH: 36

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 51

gacttgatct tctgttagcc ctaatcatca attagc 36

<210> SEQ ID NO: 52

<211> LENGTH: 1565

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 52

cctacagcag ccagggtgag attatgaggc tgagctgaga atatcaagac tgtaccgagt 60

agggggcctt ggcaagtgtg gagagcccgg cagctggggc agagggcgga gtacggtgtg 120

cgtttacgga cctcttcaaa cgaggtagga aggtcagaag tcaaaaaggg aacaaatgat 180

gtttaaccac acaaaaatga aaatccaatg gttggatatc cattccaaat acacaaaggc 240

aacggataag tgatccgggc caggcacaga aggccatgca cccgtaggat tgcactcaga 300

gctcccaaat gcataggaat agaagggtgg gtgcaggagg ctgaggggtg gggaaagggc 360

atgggtgttt catgaggaca gagcttccgt ttcatgcaat gaaaagagtt tggagacgga 420

tggtggtgac tggactatac acttacacac ggtagcgatg gtacactttg tattatgtat 480

attttaccac gatcttttta aagtgtcaaa ggcaaatggc caaatggttc cttgtcctat 540

agctgtagca gccatcggct gttagtgaca aagcccctga gtcaagatga cagcagcccc 600

cataactcct aatcggctct cccgcgtgga gtcatttagg agtagtcgca ttagagacaa 660

gtccaacatc taatcttcca ccctggccag ggccccagct ggcagcgagg gtgggagact 720

ccgggcagag cagagggcgc tgacattggg gcccggcctg gcttgggtcc ctctggcctt 780

tccccagggg ccctctttcc ttggggcttt cttgggccgc cactgctccc gctcctctcc 840

ccccatccca ccccctcacc ccctcgttct tcatatcctt ctctagtgct ccctccactt 900

tcatccaccc ttctgcaaga gtgtgggacc acaaatgagt tttcacctgg cctggggaca 960

cacgtgcccc cacaggtgct gagtgacttt ctaggacagt aatctgcttt aggctaaaat 1020

gggacttgat cttctgttag ccctaatcat caattagcag agccggtgaa ggtgcagaac 1080

ctaccgcctt tccaggcctc ctcccacctc tgccacctcc actctccttc ctgggatgtg 1140

ggggctggca cacgtgtggc ccagggcatt ggtgggattg cactgagctg ggtcattagc 1200

gtaatcctgg acaagggcag acagggcgag cggagggcca gctccggggc tcaggcaagg 1260

ctgggggctt cccccagaca ccccactcct cctctgctgg acccccactt catagggcac 1320

ttcgtgttct caaagggctt ccaaatagca tggtggcctt ggatgcccag ggaagcctca 1380

gagttgctta tctccctcta gacagaaggg gaatctcggt caagagggag aggtcgccct 1440

gttcaaggcc acccagccag ctcatggcgg taatgggaca aggctggcca gccatcccac 1500

cctcagaagg gacccggtgg ggcaggtgat ctcagaggag gctcacttct gggtctcaca 1560

ttctt 1565

<210> SEQ ID NO: 53

<211> LENGTH: 491

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 53

ggttccaggc ctcggcccta aatagtctcc ctgggctttc aagagaacca catgagaaag 60

gaggattcgg gctctgagca gtttcaccac ccacccccca gtctgcaaat cctgacccgt 120

gggtccacct gccccaaagg cggacgcagg acagtagaag ggaacagaga acacataaac 180

acagagaggg ccacagcggc tcccacagtc accgccacct tcctggcggg gatgggtggg 240

gcgtctgagt ttggttccca gcaaatccct ctgagccgcc cttgcgggct cgcctcagga 300

gcaggggagc aagaggtggg aggaggaggt ctaagtccca ggcccaatta agagatcagg 360

tagtgtaggg tttgggagct tttaaggtga agaggcccgg gctgatccca caggccagta 420

taaagcgccg tgaccctcag gtgatgcgcc agggccggct gccgtcgggg acagggcttt 480

ccatagccat g 491

<210> SEQ ID NO: 54

<211> LENGTH: 491

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 54

agtagaaacg gggtttcacc atgttagtca ggctggtcgg gaactcctga cctcaggaga 60

tctacccgcc ttggcctccc aaagtgctgg gattacaggc gtgtgccact gtgcccagcc 120

actttttttt agacagagtc ttggtctgtt gcccaggcta gagttcagtg gcgccatctc 180

agctcactgc aacctccgcc tcccagattc aagcgattct cctgcctcga cctcccagta 240

gctgggatta caggtttcca gcaaatccct ctgagccgcc cccgggggct cgcctcagga 300

gcaaggaagc aaggggtggg aggaggaggt ctaagtccca ggcccaatta agagatcaga 360

tggtgtagga tttgggagct tttaaggtga agaggcccgg gctgatccca ctggccggta 420

taaagcaccg tgaccctcag gtgacgcacc agggccggct gccgtcgggg acagggcttt 480

ccatagccat g 491

<210> SEQ ID NO: 55

<211> LENGTH: 239

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 55

ggtttccagc aaatccctct gagccgcccc cgggggctcg cctcaggagc aaggaagcaa 60

ggggtgggag gaggaggtct aagtcccagg cccaattaag agatcagatg gtgtaggatt 120

tgggagcttt taaggtgaag aggcccgggc tgatcccact ggccggtata aagcaccgtg 180

accctcaggt gacgcaccag ggccggctgc cgtcggggac agggctttcc atagccatg 239

<210> SEQ ID NO: 56

<211> LENGTH: 169

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR

<400> SEQENCE: 56

gccagggccg gcugccgucg gggacagggc uuuccauagc caugcuagag gauccgguac 60

ucgaggaacu gaaaaaccag aaaguuaacu ggccuguacg gaaguguuac uucugcucua 120

aaagcugcgg aauuguaccc gcggccgcgg gacagggcuu uccauagcc 169

<210> SEQ ID NO: 57

<211> LENGTH: 77

<212> TYPE: RNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR

<400> SEQENCE: 57

gcaccagggc cggcugccgu cggggacagg gcuuuccaua gcccaggccu cuagagagga 60

guaucagugc cgccacc 77

<210> SEQ ID NO: 58

<211> LENGTH: 213

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 58

aacggctagc ctgaggagct gctgcgacag tccactacct ttttcgagag tgactcccgt 60

tgtcccaagg cttcccagag cgaacctgtg cggctgcagg caccggcgcg tcgagtttcc 120

ggcgtccgga aggaccgagc tcttctcgcg gatccagtgt tccgtttcca gcccccaatc 180

tcagagccga gccgacagag agcagggaac cgc 213

<210> SEQ ID NO: 59

<211> LENGTH: 97

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: pR2.1 intron sequence

<400> SEQENCE: 59

gtaagtttag tctttttgtc ttttatttca ggtcccggat ccggtggtgg tgcaaatcaa 60

agaactgctc ctcagtggat gttgccttta cttctag 97

<210> SEQ ID NO: 60

<211> LENGTH: 133

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: MNTC intron sequence

<400> SEQENCE: 60

gtaagtatca aggttacaag acaggtttaa ggagaccaat agaaactggg cttgtcgaga 60

cagagaagac tcttgcgttt ctgataggca cctattggtc ttactgacat ccactttgcc 120

tttctctcca cag 133

<210> SEQ ID NO: 61

<211> LENGTH: 1095

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 61

atggcccagc agtggagcct ccaaaggctc gcaggccgcc atccgcagga cagctatgag 60

gacagcaccc agtccagcat cttcacctac accaacagca actccaccag aggccccttc 120

gaaggcccga attaccacat cgctcccaga tgggtgtacc acctcaccag tgtctggatg 180

atctttgtgg tcactgcatc cgtcttcaca aatgggcttg tgctggcggc caccatgaag 240

ttcaagaagc tgcgccaccc gctgaactgg atcctggtga acctggcggt cgctgaccta 300

gcagagaccg tcatcgccag cactatcagc attgtgaacc aggtctctgg ctacttcgtg 360

ctgggccacc ctatgtgtgt cctggagggc tacaccgtct ccctgtgtgg gatcacaggt 420

ctctggtctc tggccatcat ttcctgggag aggtggctgg tggtgtgcaa gccctttggc 480

aatgtgagat ttgatgccaa gctggccatc gtgggcattg ccttctcctg gatctggtct 540

gctgtgtgga cagccccgcc catctttggt tggagcaggt actggcccca cggcctgaag 600

acttcatgcg gcccagacgt gttcagcggc agctcgtacc ccggggtgca gtcttacatg 660

attgtcctca tggtcacctg ctgcatcatc ccactcgcta tcatcatgct ctgctacctc 720

caagtgtggc tggccatccg agcggtggca aagcagcaga aagagtctga atccacccag 780

aaggcagaga aggaagtgac gcgcatggtg gtggtgatga tctttgcgta ctgcgtctgc 840

tggggaccct acaccttctt cgcatgcttt gctgctgcca accctggtta cgccttccac 900

cctttgatgg ctgccctgcc ggcctacttt gccaaaagtg ccactatcta caaccccgtt 960

atctatgtct ttatgaaccg gcagtttcga aactgcatct tgcagctttt cgggaagaag 1020

gttgacgatg gctctgaact ctccagcgcc tccaaaacgg aggtctcatc tgtgtcctcg 1080

gtatcgcctg catga 1095

<210> SEQ ID NO: 62

<211> LENGTH: 1095

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 62

atggcccagc agtggagcct ccaaaggctc gcaggccgcc atccgcagga cagctatgag 60

gacagcaccc agtccagcat cttcacctac accaacagca actccaccag aggccccttc 120

gaaggcccga attaccacat cgctcccaga tgggtgtacc acctcaccag tgtctggatg 180

atctttgtgg tcattgcatc cgtcttcaca aatgggcttg tgctggcggc caccatgaag 240

ttcaagaagc tgcgccaccc gctgaactgg atcctggtga acctggcggt cgctgacctg 300

gcagagaccg tcatcgccag cactatcagc gttgtgaacc aggtctatgg ctacttcgtg 360

ctgggccacc ctatgtgtgt cctggagggc tacaccgtct ccctgtgtgg gatcacaggt 420

ctctggtctc tggccatcat ttcctgggag agatggatgg tggtctgcaa gccctttggc 480

aatgtgagat ttgatgccaa gctggccatc gtgggcattg ccttctcctg gatctgggct 540

gctgtgtgga cagccccgcc catctttggt tggagcaggt actggcccca cggcctgaag 600

acttcatgcg gcccagacgt gttcagcggc agctcgtacc ccggggtgca gtcttacatg 660

attgtcctca tggtcacctg ctgcatcacc ccactcagca tcatcgtgct ctgctacctc 720

caagtgtggc tggccatccg agcggtggca aagcagcaga aagagtctga atccacccag 780

aaggcagaga aggaagtgac gcgcatggtg gtggtgatgg tcctggcatt ctgcttctgc 840

tggggaccat acgccttctt cgcatgcttt gctgctgcca accctggcta ccccttccac 900

cctttgatgg ctgccctgcc ggccttcttt gccaaaagtg ccactatcta caaccccgtt 960

atctatgtct ttatgaaccg gcagtttcga aactgcatct tgcagctttt cgggaagaag 1020

gttgacgatg gctctgaact ctccagcgcc tccaaaacgg aggtctcatc tgtgtcctcg 1080

gtatcgcctg catga 1095

<210> SEQ ID NO: 63

<211> LENGTH: 1092

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 63

atggcccagc agtggagcct ccaaaggctc gcaggccgcc atccgcagga cagctatgag 60

gacagcaccc agtccagcat cttcacctac accaacagca actccaccag aggccccttc 120

gaaggcccga attaccacat cgctcccaga tgggtgtacc acctcaccag tgtctggatg 180

atctttgtgg tcattgcatc cgtcttcaca aatgggcttg tgctggcggc caccatgaag 240

ttcaagaagc tgcgccaccc gctgaactgg atcctggtga acctggcggt cgctgacctg 300

gcagagaccg tcatcgccag cactatcagc gttgtgaacc aggtctatgg ctacttcgtg 360

ctgggccacc ctatgtgtgt cctggagggc tacaccgtct ccctgtgtgg gatcacaggt 420

ctctggtctc tggccatcat ttcctgggag agatggctgg tggtctgcaa gccctttggc 480

aatgtgagat ttgatgccaa gctggccatc gtgggcattg ccttctcctg gatctgggct 540

gctgtgtgga cagccccgcc catctttggt tggagcaggt actggcccta cggcctgaag 600

acttcatgcg gcccagacgt gttcagcggc agctcgtacc ccggggtgca gtcttacatg 660

attgtcctca tggtcacctg ctgcatcacc ccactcagca tcatcgtgct ctgctacctc 720

caagtgtggc tggccatccg agcggtggca aagcagcaga aagagtctga atccacccag 780

aaggcagaga aggaagtgac gcgcatggtg gtggtgatgg tcctggcatt ctgcttctgc 840

tggggaccat acgccttctt cgcatgcttt gctgctgcca accctggcta ccccttccac 900

cctttgatgg ctgccctgcc gtcctacttt gccaaaagtg ccactatcta caaccccgtt 960

atctatgtct ttatgaaccg gcagtttcga aactgcatct tgcagctttt cgggaagaag 1020

gttgacgatg gctctgaact ctccagcgcc tccaaaacgg aggtctcatc tgtgtcctcg 1080

gtatcgcctg ca 1092

<210> SEQ ID NO: 64

<211> LENGTH: 1092

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 64

atggcccagc agtggagcct gcagcggctg gccggccggc acccccagga cagctacgag 60

gacagcaccc agagcagcat cttcacctac accaacagca acagcacccg gggccccttc 120

gagggcccca actaccacat cgccccccgg tgggtgtacc acctgaccag cgtgtggatg 180

atcttcgtgg tgatcgccag cgtgttcacc aacggcctgg tgctggccgc caccatgaag 240

ttcaagaagc tgcggcaccc cctgaactgg atcctggtga acctggccgt ggccgacctg 300

gccgagaccg tgatcgccag caccatcagc gtggtgaacc aggtgtacgg ctacttcgtg 360

ctgggccacc ccatgtgcgt gctggagggc tacaccgtga gcctgtgcgg catcaccggc 420

ctgtggagcc tggccatcat cagctgggag cggtggctgg tggtgtgcaa gcccttcggc 480

aacgtgcggt tcgacgccaa gctggccatc gtgggcatcg ccttcagctg gatctgggcc 540

gccgtgtgga ccgccccccc catcttcggc tggagccggt actggcccta cggcctgaag 600

accagctgcg gccccgacgt gttcagcggc agcagctacc ccggcgtgca gagctacatg 660

atcgtgctga tggtgacctg ctgcatcacc cccctgagca tcatcgtgct gtgctacctg 720

caggtgtggc tggccatccg ggccgtggcc aagcagcaga aggagagcga gagcacccag 780

aaggccgaga aggaggtgac ccggatggtg gtggtgatgg tgctggcctt ctgcttctgc 840

tggggcccct acgccttctt cgcctgcttc gccgccgcca accccggcta ccccttccac 900

cccctgatgg ccgccctgcc cagctacttc gccaagagcg ccaccatcta caaccccgtg 960

atctacgtgt tcatgaaccg gcagttccgg aactgcatcc tgcagctgtt cggcaagaag 1020

gtggacgacg gcagcgagct gagcagcgcc agcaagaccg aggtgagcag cgtgagcagc 1080

gtgagccccg cc 1092

<210> SEQ ID NO: 65

<211> LENGTH: 1092

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 65

atggcccagc agtggagcct gcagcggctg gccggccggc acccccagga cagctacgag 60

gacagcaccc agagcagcat cttcacctac accaacagca acagcacccg gggccccttc 120

gagggcccca actaccacat cgccccccgg tgggtgtacc acctgaccag cgtgtggatg 180

atcttcgtgg tgatcgccag cgtgttcacc aacggcctgg tgctggccgc cacaatgaag 240

ttcaagaagc tgcggcaccc cctgaactgg atcctggtga acctggccgt ggccgacctg 300

gccgagaccg tgatcgccag cacaatcagc gtggtgaacc aggtgtacgg ctacttcgtg 360

ctgggccacc ccatgtgcgt gctggagggc tacaccgtga gcctgtgcgg catcaccggc 420

ctgtggagcc tggccatcat cagctgggag cggtggctgg tggtgtgcaa gcccttcggc 480

aacgtgcggt tcgacgccaa gctggctatc gtgggaatcg ccttcagctg gatctgggcc 540

gccgtgtgga ccgccccccc tatcttcggc tggagccggt actggcccta cggcctgaag 600

accagctgcg gccccgacgt gttcagcggc agcagctacc ccggcgtgca gagctacatg 660

atcgtgctga tggtgacctg ctgcatcacc cccctgagca tcatcgtgct gtgctacctg 720

caggtgtggc tggccatccg ggccgtggcc aagcagcaga aggagagcga gagcacccag 780

aaggccgaga aggaggtgac ccggatggtg gtggtgatgg tgctggcctt ctgcttctgc 840

tggggcccct acgccttctt cgcctgcttc gccgccgcca accccggcta ccccttccac 900

cccctgatgg ccgccctgcc cagctacttc gccaagagcg ccaccatcta caaccccgtg 960

atctacgtgt tcatgaaccg gcagttccgg aactgcatcc tgcagctgtt cggcaagaag 1020

gtggacgacg gcagcgagct gagcagcgcc agcaagaccg aggtgtcaag cgtgagcagc 1080

gtgagccccg cc 1092

<210> SEQ ID NO: 66

<211> LENGTH: 1047

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 66

atgagaaaaa tgtcggagga agagttttat ctgttcaaaa atatctcttc agtggggccg 60

tgggatgggc ctcagtacca cattgcccct gtctgggcct tctacctcca ggcagctttc 120

atgggcactg tcttccttat agggttccca ctcaatgcca tggtgctggt ggccacactg 180

cgctacaaaa agttgcggca gcccctcaac tacattctgg tcaacgtgtc cttcggaggc 240

ttcctcctct gcatcttctc tgtcttccct gtcttcgtcg ccagctgtaa cggatacttc 300

gtcttcggtc gccatgtttg tgctttggag ggcttcctgg gcactgtagc aggtctggtt 360

acaggatggt cactggcctt cctggccttt gagcgctaca ttgtcatctg taagcccttc 420

ggcaacttcc gcttcagctc caagcatgca ctgacggtgg tcctggctac ctggaccatt 480

ggtattggcg tctccatccc acccttcttt ggctggagcc ggttcatccc tgagggcctg 540

cagtgttcct gtggccctga ctggtacacc gtgggcacca aataccgcag cgagtcctat 600

acgtggttcc tcttcatctt ctgcttcatt gtgcctctct ccctcatctg cttctcctac 660

actcagctgc tgagggccct gaaagctgtt gcagctcagc agcaggagtc agctacgacc 720

cagaaggctg aacgggaggt gagccgcatg gtggttgtga tggtaggatc cttctgtgtc 780

tgctacgtgc cctacgcggc cttcgccatg tacatggtca acaaccgtaa ccatgggctg 840

gacttacggc ttgtcaccat tccttcattc ttctccaaga gtgcttgcat ctacaatccc 900

atcatctact gcttcatgaa taagcagttc caagcttgca tcatgaagat ggtgtgtggg 960

aaggccatga cagatgaatc cgacacatgc agctcccaga aaacagaagt ttctactgtc 1020

tcgtctaccc aagttggccc caactga 1047

<210> SEQ ID NO: 67

<211> LENGTH: 1064

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 67

acccagtcga gcatcttcac ctataccaac agcaacagta ccagaggtcc ctttgaaggc 60

cccaattatc acattgctcc caggtgggtg taccacctca ccagcgcctg gatgatcttt 120

gtggtcattg catcagtctt cactaatggg cttgtgctgg cagccaccat acggttcaag 180

aagctgcgcc atcctctgaa ttggattctg gtgaacttgg caattgctga cctaatagag 240

accatcattg ctggcactat cagtgttgtg aaccaaatct atggctactt cgtactaggc 300

caccctctgt gcgtcgtgga aggctacatt gtcgccctgt gtggcatcac aggcctctgg 360

tccctggccg ttatttcctg ggagaggtgg ctggtggtct gcaagccctt tggcaatatg 420

agatttgatg ctaagctggc cactgtggga atcatctttt cttgggtctg ggctgctgtg 480

tggacagccc caccaatctt tggttggagc aggtactggc cttatggcct gaagacatcc 540

tgtggtccag acgtgttcag cggcacttcg tatcctgggg ttcagtctta tatgatggtt 600

ctcatggtca cgtgctgcat cttcccactt agcatcatcg tgctctgcta cctccaagtg 660

tggctggcca tccgagcagt agcaaagcaa caaaaagaat ctgagtctac ccagaaggct 720

gagaaggagg tgacacgcat ggtgcttgtg atgatcttcg catactgcat ctgctggggc 780

ccctacgctg tctttgcatg ctttgctact gcccaccctg gctatgcatt ccacccactt 840

gtggcctccc taccatctta ctttgcgaaa agtgccacta tctacaaccc cattatctat 900

gtctttatga accgacagtt tcaaaactgc atcttacagc tctttggaaa gaaggttgat 960

gatagctctg aacttgccag tacctccaaa acagaaacct catctgaagc cgaattccag 1020

cacactggcg gccgtactag tgatccgagt cgtagcctgg accc 1064

<210> SEQ ID NO: 68

<211> LENGTH: 1041

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 68

atgtcaggag aggatgactt ttacctgttt cagaatatct cttcggtggg gccctgggat 60

gggcctcagt accaccttgc tcctgtctgg gccttccgcc tccaggcagc cttcatggga 120

tttgtcttct ttgtggggac cccactcaat gccatagtgc tggtggccac actgcattac 180

aaaaagttgc gacagcccct caactatatt ctggtcaatg tatccctcgg gggcttcctc 240

ttctgcatct tctctgtctt cacagtcttc atcgccagct gtcacggata cttcctcttt 300

ggtcgccatg tttgtgctct ggaggccttc ttgggctctg tagcaggtct agtgacagga 360

tggtcattgg ctttcctggc ttttgaacgc tacgttgtca tctgtaaacc cttcggcagc 420

atccgcttca actccaagca tgcactgatg gtggtcctgg ctacttggat tattggtatc 480

ggggtgtcca tcccaccctt ttttggctgg agcaggttca tccctgaggg cctgcagtgc 540

tcctgtggcc cagactggta cactgtgggc accaagtatc gaagcgagta ctacacctgg 600

ttcctcttca tcttctgttt catcattcct ctttccctca tctgcttctc ctactcccag 660

ttgctgagga ctctcagagc tgtggcagct cagcagcaag agtctgctac gacacaaaag 720

gctgaacggg aggtgagtca tatggtggtg gtgatggtgg gatccttctg tctctgctac 780

gtgccctatg ctgccctggc catgtacatg gtcaacaatc ggaaccacgg gctggactta 840

cggcttgtca ccatccccgc cttcttttcc aagagctcct gtgtctacaa ccccatcatc 900

tactgcttca tgaataagca gttccgggct tgcattctgg agatggtgtg caggaagccc 960

atggcagacg aatctgacgt gtctggctct cagaaaacag aagtttctac tgtctcttct 1020

agcaaagttg gccctcactg a 1041

<210> SEQ ID NO: 69

<211> LENGTH: 930

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct channel rhodopsin

<400> SEQENCE: 69

atggactatg gcggcgcttt gtctgccgtc ggacgcgaac ttttgttcgt tactaatcct 60

gtggtggtga acgggtccgt cctggtccct gaggatcaat gttactgtgc cggatggatt 120

gaatctcgcg gcacgaacgg cgctcagacc gcgtcaaatg tcctgcagtg gcttgcagca 180

ggattcagca ttttgctgct gatgttctat gcctaccaaa cctggaaatc tacatgcggc 240

tgggaggaga tctatgtgtg cgccattgaa atggttaagg tgattctcga gttctttttt 300

gagtttaaga atccctctat gctctacctt gccacaggac accgggtgca gtggctgcgc 360

tatgcagagt ggctgctcac ttgtcctgtc atccttatcc acctgagcaa cctcaccggc 420

ctgagcaacg actacagcag gagaaccatg ggactccttg tctcagacat cgggactatc 480

gtgtgggggg ctaccagcgc catggcaacc ggctatgtta aagtcatctt cttttgtctt 540

ggattgtgct atggcgcgaa cacatttttt cacgccgcca aagcatatat cgagggttat 600

catactgtgc caaagggtcg gtgccgccag gtcgtgaccg gcatggcatg gctgtttttc 660

gtgagctggg gtatgttccc aattctcttc attttggggc ccgaaggttt tggcgtcctg 720

agcgtctatg gctccaccgt aggtcacacg attattgatc tgatgagtaa aaattgttgg 780

gggttgttgg gacactacct gcgcgtcctg atccacgagc acatattgat tcacggagat 840

atccgcaaaa ccaccaaact gaacatcggc ggaacggaga tcgaggtcga gactctcgtc 900

gaagacgaag ccgaggccgg agccgtgcca 930

<210> SEQ ID NO: 70

<211> LENGTH: 924

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct halorodopsin

<400> SEQENCE: 70

atgaggggta cgcccctgct cctcgtcgtc tctctgttct ctctgcttca ggacacagag 60

accctgcctc ccgtgaccga gagtgccgtg gcccttcaag ccgaggttac ccaaagggag 120

ttgttcgagt tcgtgctgaa cgaccctttg cttgcaagca gtctctatat caacatcgca 180

cttgcaggac tgagtatact gctgttcgtt tttatgaccc gaggactcga tgatccacgg 240

gcaaaactta ttgctgtgtc aaccatcctt gtgcctgtcg tcagcattgc ctcctacact 300

ggattggcga gcggcctgac aatttccgtt cttgaaatgc cagcgggcca ttttgcagaa 360

ggcagctcag tgatgctggg aggagaagag gtagatggtg tagtcaccat gtggggacgg 420

tatctcacct gggcactttc cacgcccatg attctcctcg ctctgggtct cctggccgga 480

agcaatgcta caaagctctt cacagctatc actttcgata tcgctatgtg cgtgactggc 540

cttgccgcgg ccctgactac ctcctcccac ctcatgagat ggttctggta cgctatcagt 600

tgtgcatgct ttctggtggt cttgtatatc ctgctggtgg agtgggcaca ggacgccaaa 660

gccgcgggaa ccgctgacat gttcaatacc ctgaagctgt tgacagtagt gatgtggctg 720

gggtatccaa ttgtgtgggc tcttggagtc gagggtatcg cggtgttgcc cgttggggtg 780

acgagctggg gatattcttt cctggatatc gtggcaaagt acattttcgc attcttgctc 840

ctgaactatc tgacgtcaaa cgaatctgtc gtgtccggca gcattttgga tgttccatct 900

gcttctggga ccccggctga tgat 924

<210> SEQ ID NO: 71

<211> LENGTH: 717

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct enhanced green fluorecent

protein

<400> SEQENCE: 71

atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60

ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120

ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180

ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240

cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300

ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360

gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420

aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480

ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540

gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600

tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660

ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaag 717

<210> SEQ ID NO: 72

<211> LENGTH: 7

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Translation initiation sequence

<400> SEQENCE: 72

accatgg 7

<210> SEQ ID NO: 73

<211> LENGTH: 13

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Translation initiation sequence

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (7)..(7)

<223> OTHER INFORMATION: n is A or G

<400> SEQENCE: 73

gccgccncca tgg 13

<210> SEQ ID NO: 74

<211> LENGTH: 221

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct pR2.1 poly A

<400> SEQENCE: 74

agacatgata agatacattg atgagtttgg acaaaccaca actagaatgc agtgaaaaaa 60

atgctttatt tgtgaaattt gtgatgctat tgctttattt gtaaccatta taagctgcaa 120

taaacaagtt aacaacaaca attgcattca ttttatgttt caggttcagg gggagatgtg 180

ggaggttttt taaagcaagt aaaacctcta caaatgtggt a 221

<210> SEQ ID NO: 75

<211> LENGTH: 85

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 75

tgaggtctgc ctcctaccca tcccgcccac cggggctttg gccacctctc ctttccccct 60

ccttctccat ccctgtaaaa taaat 85

<210> SEQ ID NO: 76

<211> LENGTH: 103

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 76

cccgggtggc atccctgtga cccctcccca gtgcctctcc tggccttgga agttgccact 60

ccagtgccca ccagccttgt cctaataaaa ttaagttgca tca 103

<210> SEQ ID NO: 77

<211> LENGTH: 225

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct poly A region

<400> SEQENCE: 77

tgtgccttct agttgccagc catctgttgt ttgcccctcc cccgtgcctt ccttgaccct 60

ggaaggtgcc actcccactg tcctttccta ataaaatgag gaaattgcat cgcattgtct 120

gagtaggtgt cattctattc tggggggtgg ggtggggcag gacagcaagg gggaggattg 180

ggaagacaat agcaggcatg ctggggatgc ggtgggctct atggc 225

<210> SEQ ID NO: 78

<211> LENGTH: 502

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct poly A region

<400> SEQENCE: 78

gtgcaggctg cctatcagaa ggtggtggct ggtgtggcca atgccctggc tcacaaatac 60

cactgagatc tttttccctc tgccaaaaat tatggggaca tcatgaagcc ccttgagcat 120

ctgacttctg gctaataaag gaaatttatt ttcattgcaa tagtgtgttg gaattttttg 180

tgtctctcac tcggaaggac atatgggagg gcaaatcatt taaaacatca gaatgagtat 240

ttggtttaga gtttggcaac atatgccata tgctggctgc catgaacaaa ggtggctata 300

aagaggtcat cagtatatga aacagccccc tgctgtccat tccttattcc atagaaaagc 360

cttgacttga ggttagattt tttttatatt ttgttttgtg ttattttttt ctttaacatc 420

cctaaaattt tccttacatg ttttactagc cagatttttc ctcctctcct gactactccc 480

agtcatagct gtccctcttc tc 502

<210> SEQ ID NO: 79

<211> LENGTH: 496

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 79

ggatccggtt ccaggcctcg gccctaaata gtctccctgg gctttcaaga gaaccacatg 60

agaaaggagg attcgggctc tgagcagttt caccacccac cccccagtct gcaaatcctg 120

acccgtgggt ccacctgccc caaaggcgga cgcaggacag tagaagggaa cagagaacac 180

ataaacacag agagggccac agcggctccc acagtcaccg ccaccttcct ggcggggatg 240

ggtggggcgt ctgagtttgg ttcccagcaa atccctctga gccgcccttg cgggctcgcc 300

tcaggagcag gggagcaaga ggtgggagga ggaggtctaa gtcccaggcc caattaagag 360

atcaggtagt gtagggtttg ggagctttta aggtgaagag gcccgggctg atcccacagg 420

ccagtataaa gcgccgtgac cctcaggtga tgccagggcc ggctgccgtc ggggacaggg 480

ctttccatag ccatgg 496

<210> SEQ ID NO: 80

<211> LENGTH: 149

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 80

ccagcaaatc cctctgagcc gcccccgggg gctcgcctca ggagcaagga agcaaggggt 60

gggaggagga ggtctaagtc ccaggcccaa ttaagagatc agatggtgta ggatttggga 120

gcttttaagg tgaagaggcc cgggctgat 149

<210> SEQ ID NO: 81

<211> LENGTH: 434

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 81

ggatccggtt ccaggcctcg gccctaaata gtctccctgg gctttcaaga gaaccacatg 60

agaaaggagg attcgggctc tgagcagttt caccacccac cccccagtct gcaaatcctg 120

acccgtgggt ccacctgccc caaaggcgga cgcaggacag tagaagggaa cagagaacac 180

ataaacacag agagggccac agcggctccc acagtcaccg ccaccttcct ggcggggatg 240

ggtggggcgt ctgagtttgg ttcccagcaa atccctctga gccgcccttg cgggctcgcc 300

tcaggagcag gggagcaaga ggtgggagga ggaggtctaa gtcccaggcc caattaagag 360

atcaggtagt gtagggtttg ggagctttta aggtgaagag gcccgggctg atcccacagg 420

ccagtataaa gcgc 434

<210> SEQ ID NO: 82

<211> LENGTH: 263

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 82

ggatccggtt ccaggcctcg gccctaaata gtctccctgg gctttcaaga gaaccacatg 60

agaaaggagg attcgggctc tgagcagttt caccacccac cccccagtct gcaaatcctg 120

acccgtgggt ccacctgccc caaaggcgga cgcaggacag tagaagggaa cagagaacac 180

ataaacacag agagggccac agcggctccc acagtcaccg ccaccttcct ggcggggatg 240

ggtggggcgt ctgagtttgg ttc 263

<210> SEQ ID NO: 83

<211> LENGTH: 171

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 83

ccagcaaatc cctctgagcc gcccttgcgg gctcgcctca ggagcagggg agcaagaggt 60

gggaggagga ggtctaagtc ccaggcccaa ttaagagatc aggtagtgta gggtttggga 120

gcttttaagg tgaagaggcc cgggctgatc ccacaggcca gtataaagcg c 171

<210> SEQ ID NO: 84

<211> LENGTH: 102

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR

<400> SEQENCE: 84

cccactggcc ggtataaagc accgtgaccc tcaggtgacg caccagggcc ggctgccgtc 60

ggggacaggg ctttccatag cccaggccca gagaggagac ag 102

<210> SEQ ID NO: 85

<211> LENGTH: 85

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR

<400> SEQENCE: 85

cccactggcc ggtataaagc accgtgaccc tcaggtgacg caccagggcc ggctgccgtc 60

ggggacaggg ctttccatag cccag 85

<210> SEQ ID NO: 86

<211> LENGTH: 17

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR

<400> SEQENCE: 86

gcccagagag gagacag 17

<210> SEQ ID NO: 87

<211> LENGTH: 185

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR construct

<400> SEQENCE: 87

cgtgaccctc aggtgatgcg ccagggccgg ctgccgtcgg ggacagggct ttccatagcc 60

atgctagagg atccggtact cgaggaactg aaaaaccaga aagttaactg gcctgtacgg 120

aagtgttact tctgctctaa aagctgcgga attgtacccg cggccgcggg acagggcttt 180

ccata 185

<210> SEQ ID NO: 88

<211> LENGTH: 110

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR construct

<400> SEQENCE: 88

cgtgaccctc aggtgatgcg ccagggccgg ctgccgtcgg ggacagggct ttccatagcc 60

atgctagagg atccggtact cgaggaactg aaaaaccaga aagttaactg 110

<210> SEQ ID NO: 89

<211> LENGTH: 75

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized 5′UTR construct

<400> SEQENCE: 89

gcctgtacgg aagtgttact tctgctctaa aagctgcgga attgtacccg cggccgcggg 60

acagggcttt ccata 75

<210> SEQ ID NO: 90

<211> LENGTH: 235

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct poly A region

<400> SEQENCE: 90

ggccgcgggg atccagacat gataagatac attgatgagt ttggacaaac cacaactaga 60

atgcagtgaa aaaaatgctt tatttgtgaa atttgtgatg ctattgcttt atttgtaacc 120

attataagct gcaataaaca agttaacaac aacaattgca ttcattttat gtttcaggtt 180

cagggggaga tgtgggaggt tttttaaagc aagtaaaacc tctacaaatg tggta 235

<210> SEQ ID NO: 91

<211> LENGTH: 152

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic construct poly A region

<400> SEQENCE: 91

ggccgcgggg atccagacat gataagatac attgatgagt ttggacaaac cacaactaga 60

atgcagtgaa aaaaatgctt tatttgtgaa atttgtgatg ctattgcttt atttgtaacc 120

attataagct gcaataaaca agttaacaac aa 152

<210> SEQ ID NO: 92

<211> LENGTH: 1714

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQENCE: 92

cctacagcag ccagggtgag attatgaggc tgagctgaga atatcaagac tgtaccgagt 60

agggggcctt ggcaagtgtg gagagcccgg cagctggggc agagggcgga gtacggtgtg 120

cgtttacgga cctcttcaaa cgaggtagga aggtcagaag tcaaaaaggg aacaaatgat 180

gtttaaccac acaaaaatga aaatccaatg gttggatatc cattccaaat acacaaaggc 240

aacggataag tgatccgggc caggcacaga aggccatgca cccgtaggat tgcactcaga 300

gctcccaaat gcataggaat agaagggtgg gtgcaggagg ctgaggggtg gggaaagggc 360

atgggtgttt catgaggaca gagcttccgt ttcatgcaat gaaaagagtt tggagacgga 420

tggtggtgac tggactatac acttacacac ggtagcgatg gtacactttg tattatgtat 480

attttaccac gatcttttta aagtgtcaaa ggcaaatggc caaatggttc cttgtcctat 540

agctgtagca gccatcggct gttagtgaca aagcccctga gtcaagatga cagcagcccc 600

cataactcct aatcggctct cccgcgtgga gtcatttagg agtagtcgca ttagagacaa 660

gtccaacatc taatcttcca ccctggccag ggccccagct ggcagcgagg gtgggagact 720

ccgggcagag cagagggcgc tgacattggg gcccggcctg gcttgggtcc ctctggcctt 780

tccccagggg ccctctttcc ttggggcttt cttgggccgc cactgctccc gctcctctcc 840

ccccatccca ccccctcacc ccctcgttct tcatatcctt ctctagtgct ccctccactt 900

tcatccaccc ttctgcaaga gtgtgggacc acaaatgagt tttcacctgg cctggggaca 960

cacgtgcccc cacaggtgct gagtgacttt ctaggacagt aatctgcttt aggctaaaat 1020

gggacttgat cttctgttag ccctaatcat caattagcag agccggtgaa ggtgcagaac 1080

ctaccgcctt tccaggcctc ctcccacctc tgccacctcc actctccttc ctgggatgtg 1140

ggggctggca cacgtgtggc ccagggcatt ggtgggattg cactgagctg ggtcattagc 1200

gtaatcctgg acaagggcag acagggcgag cggagggcca gctccggggc tcaggcaagg 1260

ctgggggctt cccccagaca ccccactcct cctctgctgg acccccactt catagggcac 1320

ttcgtgttct caaagggctt ccaaatagca tggtggcctt ggatgcccag ggaagcctca 1380

gagttgctta tctccctcta gacagaaggg gaatctcggt caagagggag aggtcgccct 1440

gttcaaggcc acccagccag ctcatggcgg taatgggaca aggctggcca gccatcccac 1500

cctcagaagg gacccggtgg ggcaggtgat ctcagaggag gctcacttct gggtctcaca 1560

ttcttccagc aaatccctct gagccgcccc cgggggctcg cctcaggagc aaggaagcaa 1620

ggggtgggag gaggaggtct aagtcccagg cccaattaag agatcagatg gtgtaggatt 1680

tgggagcttt taaggtgaag aggcccgggc tgat 1714

<210> SEQ ID NO: 93

<211> LENGTH: 234

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Optimized promoter sequence

<400> SEQENCE: 93

ccagcaaatc cctctgagcc gcccccgggg gctcgcctca ggagcaagga agcaaggggt 60

gggaggagga ggtctaagtc ccaggcccaa ttaagagatc agatggtgta ggatttggga 120

gcttttaagg tgaagaggcc cgggctgatc ccactggccg gtataaagca ccgtgaccct 180

caggtgacgc accagggccg gctgccgtcg gggacagggc tttccatagc ccag 234

<210> SEQ ID NO: 94

<211> LENGTH: 235

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Optimized intron sequence

<400> SEQENCE: 94

cccactggcc ggtataaagc accgtgaccc tcaggtgacg caccagggcc ggctgccgtc 60

ggggacaggg ctttccatag cccaggtaag tatcaaggtt acaagacagg tttaaggaga 120

ccaatagaaa ctgggcttgt cgagacagag aagactcttg cgtttctgat aggcacctat 180

tggtcttact gacatccact ttgcctttct ctccacaggc ccagagagga gacag 235

<210> SEQ ID NO: 95

<211> LENGTH: 1958

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Cassette comprising optimized enhance,

optimized promoter, optimized 5′UTR, optimized intron, optimized

kozak and optimized polyA region

<400> SEQENCE: 95

cctacagcag ccagggtgag attatgaggc tgagctgaga atatcaagac tgtaccgagt 60

agggggcctt ggcaagtgtg gagagcccgg cagctggggc agagggcgga gtacggtgtg 120

cgtttacgga cctcttcaaa cgaggtagga aggtcagaag tcaaaaaggg aacaaatgat 180

gtttaaccac acaaaaatga aaatccaatg gttggatatc cattccaaat acacaaaggc 240

aacggataag tgatccgggc caggcacaga aggccatgca cccgtaggat tgcactcaga 300

gctcccaaat gcataggaat agaagggtgg gtgcaggagg ctgaggggtg gggaaagggc 360

atgggtgttt catgaggaca gagcttccgt ttcatgcaat gaaaagagtt tggagacgga 420

tggtggtgac tggactatac acttacacac ggtagcgatg gtacactttg tattatgtat 480

attttaccac gatcttttta aagtgtcaaa ggcaaatggc caaatggttc cttgtcctat 540

agctgtagca gccatcggct gttagtgaca aagcccctga gtcaagatga cagcagcccc 600

cataactcct aatcggctct cccgcgtgga gtcatttagg agtagtcgca ttagagacaa 660

gtccaacatc taatcttcca ccctggccag ggccccagct ggcagcgagg gtgggagact 720

ccgggcagag cagagggcgc tgacattggg gcccggcctg gcttgggtcc ctctggcctt 780

tccccagggg ccctctttcc ttggggcttt cttgggccgc cactgctccc gctcctctcc 840

ccccatccca ccccctcacc ccctcgttct tcatatcctt ctctagtgct ccctccactt 900

tcatccaccc ttctgcaaga gtgtgggacc acaaatgagt tttcacctgg cctggggaca 960

cacgtgcccc cacaggtgct gagtgacttt ctaggacagt aatctgcttt aggctaaaat 1020

gggacttgat cttctgttag ccctaatcat caattagcag agccggtgaa ggtgcagaac 1080

ctaccgcctt tccaggcctc ctcccacctc tgccacctcc actctccttc ctgggatgtg 1140

ggggctggca cacgtgtggc ccagggcatt ggtgggattg cactgagctg ggtcattagc 1200

gtaatcctgg acaagggcag acagggcgag cggagggcca gctccggggc tcaggcaagg 1260

ctgggggctt cccccagaca ccccactcct cctctgctgg acccccactt catagggcac 1320

ttcgtgttct caaagggctt ccaaatagca tggtggcctt ggatgcccag ggaagcctca 1380

gagttgctta tctccctcta gacagaaggg gaatctcggt caagagggag aggtcgccct 1440

gttcaaggcc acccagccag ctcatggcgg taatgggaca aggctggcca gccatcccac 1500

cctcagaagg gacccggtgg ggcaggtgat ctcagaggag gctcacttct gggtctcaca 1560

ttcttccagc aaatccctct gagccgcccc cgggggctcg cctcaggagc aaggaagcaa 1620

ggggtgggag gaggaggtct aagtcccagg cccaattaag agatcagatg gtgtaggatt 1680

tgggagcttt taaggtgaag aggcccgggc tgatcccact ggccggtata aagcaccgtg 1740

accctcaggt gacgcaccag ggccggctgc cgtcggggac agggctttcc atagcccagg 1800

taagtatcaa ggttacaaga caggtttaag gagaccaata gaaactgggc ttgtcgagac 1860

agagaagact cttgcgtttc tgataggcac ctattggtct tactgacatc cactttgcct 1920

ttctctccac aggcccagag aggagacagg ccgccacc 1958

<210> SEQ ID NO: 96

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 96

Leu Gly Glu Thr Thr Arg Pro

1 5

<210> SEQ ID NO: 97

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 97

Asn Glu Thr Ile Thr Arg Pro

1 5

<210> SEQ ID NO: 98

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 98

Lys Ala Gly Gln Ala Asn Asn

1 5

<210> SEQ ID NO: 99

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 99

Lys Asp Pro Lys Thr Thr Asn

1 5

<210> SEQ ID NO: 100

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 100

Lys Asp Thr Asp Thr Thr Arg

1 5

<210> SEQ ID NO: 101

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 101

Arg Ala Gly Gly Ser Val Gly

1 5

<210> SEQ ID NO: 102

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 102

Ala Val Asp Thr Thr Lys Phe

1 5

<210> SEQ ID NO: 103

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide insertion in the AAV GH loop

<400> SEQENCE: 103

Ser Thr Gly Lys Val Pro Asn

1 5

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

25.17/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

67.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

70.84/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

44.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

24.9/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
網膜変性症治療剤 TORAY IND INC 26 September 1997 13 April 1999
Use of recombinant gene delivery vectors for treating or preventing diseases of the eye MANNING WILLIAM C.,DWARKI VARAVANI J.,RENDAHL KATHERINE,ZHOU SHANGZHEN,MCGEE LAURA H. 04 March 2002 19 December 2002
Novel adenoviral vectors, packaging cell lines, recombinant adenoviruses and methods CELL GENESYS, INC. 13 November 2001 14 November 2002
Polynucleotide constructs and uses thereof NAYLOR STUART,KINGSMAN SUSAN MARY,BINLEY KATIE 26 March 2004 25 November 2004
Photodynamic therapy of occult age-related macular degeneration VALEANT PHARMACEUTICALS INTERNATIONAL, INC.,NOVARTIS, A.G. 06 February 2002 08 May 2003
See full citation <>

More like this

Title Current Assignee Application Date Publication Date
Viral vectors for the treatment of retinal dystrophy NOVARTIS AG,BIGELOW, CHAD ERIC,CHOI, VIVIAN,DRYJA, THADDEUS PETER,POLICE, SESHIDHAR REDDY 02 May 2013 07 November 2013
Recombinant aav vectors expressing osteoprotective genes, including has2 and lubricin, useful in the treatment of osteoarthritis and related joint conditions in mammals MERIAL, INC.,GENZYME CORPORATION 13 January 2017 20 July 2017
Adeno-Associated Virus Materials and Methods NATIONWIDE CHILDREN'S HOSPITAL, INC. 19 January 2010 09 December 2010
Composition for treatment of crigler-najjar syndrome THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA 14 December 2016 22 June 2017
Retroviral vectors expressing exogenous gene or exogenous nucleic acid sequences ENZO THERAPEUTICS, INC. 04 June 2003 19 October 2010
Capsid-free AAV vectors, compositions, and methods for vector production and gene delivery ASSOCIATION INSTITUT DE MYOLOGIE,UNIVERSITÉ PIERRE ET MARIE CURIE,CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS,INSERM - INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE,US DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH 12 March 2011 19 September 2012
Production of oversized adeno-associated vectors GENZYME CORPORATION 07 April 2016 15 December 2016
Recombinant adeno-associated vectors for targeted treatment CITY OF HOPE 09 March 2017 12 December 2017
Methods and compositions for antibody-evading virus vectors THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL,UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC. 28 September 2016 11 May 2017
Adeno-associated virus variants and methods of use thereof THE REGENTS OF THE UNIVERSITY OF CALIFORNIA 29 May 2014 21 January 2016
Self-complementary parvoviral vectors, and methods for making and using the same THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY,KAY, MARK, A.,GRIMM, DIRK 31 January 2007 07 February 2008
Method for generating replication defective viral vectors that are helper free ROCKEFELLER UNIVERSITY, THE 31 May 2002 29 November 2011
Adeno-associated virus vectors for treatment of glycogen storage disease THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES,UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED 25 November 2014 09 May 2017
Adeno-associated virus with inverted terminal repeat sequences as promoter THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES 02 June 1993 06 October 2010
RPGRX連鎖性網膜変性のAAV媒介型遺伝子治療 ザ·トラステイーズ·オブ·ザ·ユニバーシテイ·オブ·ペンシルベニア,ユニバーシテイ·オブ·フロリダ·リサーチ·フアンデーシヨン·インコーポレーテツド 23 January 2013 13 August 2015
Adeno-associated virus (AAV) serotype 8 sequences, vectors containing same and uses therefor THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA 12 November 2002 24 August 2011
Recombinant hepatitis virus vectors ACUVECTOR GROUP INC. 18 September 1996 09 November 1999
AAV vectors for gene delivery to the lung AVIGEN, INC 02 June 2005 23 September 2008
Compositions and methods for enhanced gene expression in cone cells AVALANCHE BIOTECHNOLOGIES, INC.,UNIVERSITY OF WASHINGTON,NEITZ, JAY,NEITZ, MAUREEN 17 March 2015 24 September 2015
Adeno-associated virus (AAV) clades, sequences, vectors containing same, and uses thereof THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA 30 September 2004 09 March 2011
See all similar patents <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10000741 Compositions enhanced 1 US10000741 Compositions enhanced 2 US10000741 Compositions enhanced 3