 steps of: S1, detecting beam current densities and nonuniformities of beam current density distribution under various decelerating voltages
 S2, determining an operation decelerating voltage based on the beam current densities and the nonuniformities of beam current density distribution
 and S3, performing an ion implantation under the determined operation decelerating voltage, wherein S1 comprises steps of: S11, setting initial values of parameters, including: setting an initial value of the decelerating voltage to V_{0}, the beam current density to ρ_{0}, the nonuniformity of beam current density distribution to x_{0}, an optimization range of the decelerating voltage to V_{0}±L, a control error range of the beam current density to p, and the nonuniformity of beam current density distribution to be less than q, and S12, preliminarily determining starting points for optimization of the decelerating voltage, wherein m different decelerating voltage test points are taken within the optimization range of the decelerating voltage V_{0}±L, and beam current densities ρ_{g }and nonuniformities of beam current density distribution x_{g }under the m test points are measured, respectively.
Ion implantation method and ion implantation apparatus performing the same
Updated Time 12 June 2019
Patent Registration DataPublication Number
US10002799
Application Number
US14/422364
Application Date
07 May 2014
Publication Date
19 June 2018
Current Assignee
BOE TECHNOLOGY GROUP CO., LTD.
Original Assignee (Applicant)
BOE TECHNOLOGY GROUP CO., LTD.
International Classification
H01L21/66,H01J37/304,H01J37/317,H01L21/265
Cooperative Classification
H01L22/20,H01J37/304,H01J37/3171,H01L21/265,H01J2237/04756
Inventor
TIAN, HUI,HUANGFU, LUJIANG
Patent Images
This patent contains figures and images illustrating the invention and its embodiment.
Abstract
The present invention provides an improved ion implantation method and an ion implantation apparatus for performing the improved ion implantation method, belongs to the field of ion implantation technology, which can solve the problem of the poor stability and uniformity of the ion beam of the existing ion implantation apparatus. The improved ion implantation method of the invention comprises steps of: S1, detecting densities and beam distribution nonuniformities under various decelerating voltages; S2, determining an operation decelerating voltage based on the beam densities and the beam distribution nonuniformities; and S3, performing an ion implantation under the determined operation decelerating voltage. The present invention ensures the uniformity and stability of the ion beam, and thus ensures the uniformity of performances of the processed base materials in each batch or among various batches.
Claims
1. An ion implantation method comprising steps of: S1, detecting beam current densities and nonuniformities of beam current density distribution under various decelerating voltages; S2, determining an operation decelerating voltage based on the beam current densities and the nonuniformities of beam current density distribution; and S3, performing an ion implantation under the determined operation decelerating voltage, wherein S1 comprises steps of: S11, setting initial values of parameters, including: setting an initial value of the decelerating voltage to V_{0}, the beam current density to ρ_{0}, the nonuniformity of beam current density distribution to x_{0}, an optimization range of the decelerating voltage to V_{0}±L, a control error range of the beam current density to p, and the nonuniformity of beam current density distribution to be less than q, and S12, preliminarily determining starting points for optimization of the decelerating voltage, wherein m different decelerating voltage test points are taken within the optimization range of the decelerating voltage V_{0}±L, and beam current densities ρ_{g }and nonuniformities of beam current density distribution x_{g }under the m test points are measured, respectively.
2. The ion implantation method of claim 1, wherein S2 comprises steps of: S21, filtering the starting points for optimization of the decelerating voltage, including: taking decelerating voltages at n test points, under which the beam current density ρ_{g }and the nonuniformity of beam current density distribution x_{g }satisfy ρ_{g}−ρ_{0}<p and x_{g}<q, as a startingpoint set for optimization of the decelerating voltage; and ranking the n starting points for optimization of the decelerating voltage according to an order of the nonuniformities of beam current density distribution x_{g }from the smallest one to the biggest one, and taking them as starting points for optimization of the decelerating voltage sequentially; S22, evaluating preoperation decelerating voltages, sequentially evaluating the starting points for optimization of the decelerating voltage, performing an ion implantation process under a decelerating voltage V_{i }corresponding to the ith starting point for optimization of the decelerating voltage, obtaining a nonuniformity of beam current density distribution x_{i }corresponding to the decelerating voltage V_{i}, detecting and recording corresponding nonuniformities of beam current density distribution every a predetermined time interval for k times, and defining the recorded nonuniformities of beam current density distribution as x_{ir}∈[x_{i1}, x_{i2}, . . . x_{ik}]; S23, determining an operation decelerating voltage, including: comparing an error ratio value x_{ir}−x_{i}/x_{i }between x_{ir }and x_{i }with a control error upper limit W of the nonuniformity of beam current density distribution; when all x_{ir }satisfy (x_{ir}−x_{i}/x_{i})<W, determining the decelerating voltage V_{i }corresponding to the ith test point as the operation decelerating voltage; and when at least one x_{ir }satisfies (x_{ir}−x_{i}/x_{i})≥W, performing S22 for the decelerating voltage V_{i+1}.
3. The ion implantation method of claim 1, wherein p is 5%, and q is 10%.
4. The ion implantation method of claim 2, wherein p is 5%, and q is 10%.
5. The ion implantation method of claim 1, wherein m is a natural number equal to or more than 10.
6. The ion implantation method of claim 2, wherein m is a natural number equal to or more than 10.
7. The ion implantation method of claim 3, wherein m is a natural number equal to or more than 10.
8. The ion implantation method of claim 4, wherein m is a natural number equal to or more than 10.
9. The ion implantation method of claim 1, wherein L=V_{0}/5.
10. The ion implantation method of claim 2, wherein L=V_{0}/5.
11. The ion implantation method of claim 3, wherein L=V_{0}/5.
12. The ion implantation method of claim 4, wherein L=V_{0}/5.
13. The ion implantation method of claim 1, wherein them test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L.
14. The ion implantation method of claim 2, wherein the m test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L.
15. The ion implantation method of claim 3, wherein the m test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L.
16. The ion implantation method of claim 2, wherein W is 3%.
17. The ion implantation method of claim 2, wherein k is a natural number equal to or more than 10.
18. The ion implantation method of claim 1, wherein S3 comprises a step of performing the ion implantation process on at least one base material under the determined operation decelerating voltage.
19. An ion implantation apparatus for performing the ion implantation method of claim 1.
Claim Tree

11. An ion implantation method comprising

2. The ion implantation method of claim 1, wherein
 S2 comprises

3. The ion implantation method of claim 1, wherein
 p is 5%, and q is 10%.

5. The ion implantation method of claim 1, wherein
 m is a natural number equal to or more than 10.

9. The ion implantation method of claim 1, wherein
 L=V_{0}/5.

13. The ion implantation method of claim 1, wherein
 them test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L.

18. The ion implantation method of claim 1, wherein
 S3 comprises


1919. An ion implantation apparatus for performing the ion implantation method of claim 1.
Description
This is a National Phase Application filed under 35 U.S.C. 371 as a national stage of PCT/CN2014/076949, filed May 7, 2014, and claims priority benefit from Chinese Application No. 201310717393.3, filed Dec. 23, 2013, the content of each of which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
The invention belongs to the field of ion implantation technology, and particularly, to an improved ion implantation method and an ion implantation apparatus performing the same.
BACKGROUND OF THE INVENTION
Among the semiconductor device manufacturing processes, an ion implantation process is used to perform doping on a display panel, a semiconductor wafer or other work pieces. Doping is often performed on a substrate, and various expected effects on the substrate may be achieved by implanting a certain type of ions therein to change the diffusion capability of a dielectric layer of the substrate.
In a practical application, an ion implantation process is performed in batches, that is, a plurality of substrates are implanted simultaneously or implanted in batches. When a plurality of substrates or a plurality of batches of substrates are processed in this manner, the ion implantation apparatus is required to continuously generate uniform and stable ion beam.
However, when a large batches of substrates are processed by using a conventional ion implantation apparatus, the stability and uniformity of the ion beam are always changed, that is, when different batches of substrates are processed, there are remarkable difference in the stability and uniformity of the ion beam, thus performance uniformity of the processed base materials in each batch or among various batches cannot be ensured. The stability and uniformity of ion implantation have become a problem to be solved urgently in the current semiconductor process. In the prior art, in order to solve the problem in stability of ion implantation, a common method used is to improve the structure of the apparatus, however, this method causes a high cost, and the stability of ion implantation is still low.
SUMMARY OF THE INVENTION
An object of the invention is to solve the problem of the poor stability and uniformity of ion implantation in the prior art, and the present invention provides an improved ion implantation method and an ion implantation apparatus performing the same.
A solution adopted in the invention to solve the problem is an improved ion implantation method comprising steps of:
S1, detecting beam current densities and nonuniformities of beam current density distribution under various decelerating voltages;
S2, determining an operation decelerating voltage based on the beam current densities and the nonuniformities of beam current density distribution; and
S3, performing an ion implantation under the determined operation decelerating voltage.
Preferably, the step 1 comprises steps of:
S11, setting initial values of parameters, including: setting an initial value of the decelerating voltage to V_{0}, the beam current density to ρ_{0}, the nonuniformity of beam current density distribution to x_{0}, an optimization range of the decelerating voltage to V_{0}±L, a control error range of the beam current density to p, and the nonuniformity of beam current density distribution to be less than q;
S12, preliminarily determining starting points for optimization of the decelerating voltage,
wherein taking m different decelerating voltage test points within the optimization range of the decelerating voltage V_{0}±L, and measuring beam current densities ρ_{g }and nonuniformities of beam current density distribution x_{g }under the m test points, respectively.
Preferably, the step S2 comprises steps of:
S21, filtering the starting points for optimization of the decelerating voltage, including:
taking decelerating voltages at n test points, under which the beam current density ρ_{g }and the nonuniformity of beam current density distribution x_{g }satisfy ρ_{g}−ρ_{0}<p and x_{g}<q, as a startingpoint set for optimization of the decelerating voltage; ranking the n starting points for optimization of the decelerating voltage according to an order of the nonuniformity of beam current density distribution x_{g }from the smallest one to the biggest one, and taking them as starting points for optimization of the decelerating voltage sequentially;
S22, evaluating preoperation decelerating voltages, including:
sequentially evaluating the starting points for optimization of the decelerating voltage, performing an ion implantation process under a decelerating voltage V_{i }corresponding to the ith starting point for optimization of the decelerating voltage, obtaining a nonuniformity of beam current density distribution x_{i }corresponding to the decelerating voltage V_{i}, detecting and recording corresponding nonuniformities of beam current density distribution every a predetermined time interval for k times, and defining the recorded nonuniformities of beam current density distribution as x_{ir}∈[x_{i1}, x_{i2}, . . . x_{ik}];
S23, determining an operation decelerating voltage, including:
comparing an error ratio value x_{ir}−x_{i}/x_{i }between x_{ir }and x_{i }with a control error upper limit W of the nonuniformity of beam current density distribution;
 when all x_{ir }satisfy (x_{ir}−x_{i}/x_{i})<W, determining the decelerating voltage V_{i }corresponding to the ith test point as the operation decelerating voltage; and
when at least one x_{ir }satisfies (x_{ir}−x_{i}/x_{i})≥W, performing the step S22 for the decelerating voltage V_{i+1}.
Preferably, p is 5%, and q is 10%.
Preferably, m is a natural number equal to or more than 10.
Preferably, L=V_{0}/5.
Preferably, the m test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L.
Preferably, W is 3%.
Preferably, k is a natural number equal to or more than 10.
Preferably, the step S3 comprises performing the ion implantation process on at least one base material under the determined decelerating voltage.
Furthermore, the invention further provides an ion implantation apparatus for performing the above improved ion implantation method.
In the improved ion implantation method and the ion implantation apparatus performing the improved ion implantation method in the invention, through adjusting the decelerating voltage of the decelerating electrode of the ion implantation apparatus, an operation decelerating voltage of the decelerating electrode is determined so that the beam current density and the nonuniformity of beam current density distribution are within a predetermined control range, thus the uniformity of performances of the base materials in the same batch and among batches is ensured.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flowchart of an ion beam control method of an ion implantation apparatus in the embodiment 1 of the present invention.
FIG. 2 is a flowchart illustrating how to detect the beam current densities and the nonuniformities of beam current density distribution under various decelerating voltages in the embodiment 1 of the present invention.
FIG. 3 is a flowchart illustrating how to determine the operation decelerating voltage based on the beam current densities and the nonuniformities of beam current density distribution in the embodiment 1 of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS
In order to make persons skilled in the art better understand the solutions of the present invention, the present invention will be further described in detail below in conjunction with the drawings and embodiments.
The present invention provides an improved ion implantation method, which may be used in any type of ion implantation, so that the beam current density and the nonuniformity of beam current density distribution are within a predetermined control range, so as to ensure the uniformity of performances of the substrates subjected to the ion implantation in the same batch or among various batches.
Embodiment 1
As shown in FIG. 1, the invention provides an improved ion implantation method comprising steps of:
step S1, detecting beam current densities and nonuniformities of beam current density distribution under various decelerating voltages;
 step S2, determining an operation decelerating voltage based on the beam current densities and the nonuniformities of beam current density distribution; and
step S3, performing an ion implantation under the determined operation decelerating voltage.
Specifically, as shown in FIG. 2, the step S1 comprises following steps.
Step S11, setting initial values of parameters.
Specifically, the control parameters of an ion implantation process are set as follows: setting an initial value of the decelerating voltage to V_{0}, the beam current density to ρ_{0}, the nonuniformity of beam current density distribution to x_{0}, an optimization range of the decelerating voltage to V_{0}±L, a control error range of the beam current density to p, and the nonuniformity of beam current density distribution to be less than q.
Preferably, the initial value of the decelerating voltage V_{0 }is a decelerating voltage when the former process is stable; the beam current density ρ_{0 }and the nonuniformity of beam current density distribution x_{0 }are the beam current density and the nonuniformity of beam current density distribution corresponding to the decelerating voltage when the former process is stable. When an operator thinks that the ion implantation process is unstable, he/her may adjust the decelerating voltage near its initial value V_{0 }to ensure the stability of the ion implantation process among batches.
Process control parameters q, p and L of the ion implantation apparatus are set experientially depending on the performance of the ion implantation apparatus and requirements on processing of the base material. Preferably, the nonuniformity of beam current density distribution is less than 10%, namely, q is 10%; the control error range of the beam current density p is 5%. Preferably, the optimization range of the decelerating voltage V_{0}±L is V_{0}±V_{0}/5.
Step S12, preliminarily determining starting points for optimization of the decelerating voltage,
wherein taking m different decelerating voltage test points within the optimization range of the decelerating voltage V_{0}±L, and measuring beam current densities ρ_{g }and nonuniformities of beam current density distribution x_{g }under the m test points, respectively.
Preferably, m is a natural number equal to or more than 10, and the more the test points are selected, the more accurate the decelerating voltage obtained by optimization is.
Preferably, the m test points are uniformly distributed within the optimization range of the decelerating voltage V_{0}±L, so that the preferable operation decelerating voltage is not easily be omitted.
It should be understood that, a method for detecting the beam current density and the nonuniformity of beam current density distribution under a specific decelerating voltage is described above, however, other similar methods in the prior art are applicable.
As shown in FIG. 3, the step S2 comprises following steps.
Step S21, filtering the starting points for optimization of the decelerating voltage.
Decelerating voltages at n test points, under which the beam current density ρ_{g }and the nonuniformity of beam current density distribution x_{g }satisfy ρ_{g}−ρ_{0}<p and x_{g}<q, are taken as a startingpoint set for optimization of the decelerating voltage; that is, the above m test points are filtered to find out n test points as the starting point set for optimization of the decelerating voltage.
Next, the filtered n starting points for optimization of the decelerating voltage are ranked according to an order of the nonuniformities of beam current density distribution x_{g }from the smallest one to the biggest one, used as starting points for optimization of the decelerating voltage sequentially, and respectively recorded as (x_{g1}, x_{g2}, . . . , x_{gi}, . . . , x_{gn}). For a test point, the smaller the nonuniformity of beam current density distribution is, the better the quality of the ion beam thereof is, therefore, in a case that the beam current density is within a certain error range of a set target beam current density, a decelerating voltage corresponding to the test point with small nonuniformity of beam current density distribution is first selected to evaluate, wherein 1≤i≤n.
Step S22, evaluating preoperation decelerating voltages.
The starting points for optimization of the decelerating voltage are taken as preoperation decelerating voltages, and the size of a fluctuation range of the nonuniformities of beam current density distribution corresponding to each preoperation decelerating voltage at different time points is taken as a criterion for evaluating the preoperation decelerating voltage to determine whether the preoperation decelerating voltage is an operation decelerating voltage.
Specifically, the preoperation decelerating voltages are sequentially evaluated according to the order of the starting points for optimization of the decelerating voltage. First, the preoperation decelerating voltage V_{1 }determined in the step S21 corresponding to the smallest nonuniformity of beam current density distribution x_{g1 }is evaluated. For example, the evaluating procedure of every preoperation decelerating voltage V_{i }is as follows: performing an ion implantation process under the decelerating voltage V_{i }corresponding to the ith starting point for optimization of the decelerating voltage, obtaining a nonuniformity of beam current density distribution x_{i }corresponding to the decelerating voltage V_{i }in the step S12, detecting and recording corresponding nonuniformities of beam current density distribution every a time period of Δt for k times, and defining the recorded nonuniformities of beam current density distribution as x_{ir}∈[x_{i1}, x_{i2}, . . . x_{1k}];
Preferably, k is a natural number equal to or more than 10, and the more the test points are, the more adequate the data for optimization of the decelerating voltage is.
It should be understood that, the above parameters may be adjusted depending on experience and application scene, for example, the length of the time period of Δt and the number k of the time periods may be combinedly adjusted.
Step S23, determining an operation decelerating voltage.
comparing an error ratio value x_{ir}−x_{i}/x_{i }between the x_{ir }and x_{i }with a control error upper limit W of the nonuniformity of beam current density distribution;
wherein, preferably, W is 3%, which requires that the fluctuation range of corresponding nonuniformities of beam current density distribution of the preoperation decelerating voltage at various time points is small, and of course, W may be adjusted according to a specific application scene.
Specifically, when all x_{ir }satisfy (x_{ir}−x_{i}/x_{i})<W, the decelerating voltage V_{i }corresponding to the ith test point is determined as the operation decelerating voltage, the step S23 of determining the operation decelerating voltage is completed, and then the step S3 is performed, that is, the ion implantation process is performed under the operation decelerating voltage.
When at least one x_{ir }satisfies (x_{ir}−x_{i}/x_{1})≥W, i=i+1 is performed, and the step S22 is performed, namely, the next start point for optimization of the decelerating voltage V_{i+1 }(that is, next peroperation decelerating voltage V_{i+1}) is evaluated, and whether the peroperation decelerating voltage is the operation decelerating voltage is determined by the step S23, if yes, the step S23 of determining the operation decelerating voltage is completed and then the step S3 is performed, namely, the ion implantation process is performed under the operation decelerating voltage V_{i+1}; and if no, the step S22 is performed, that is, the preoperation decelerating voltage V_{i+2 }is evaluated, and whether the peroperation decelerating voltage is the operation decelerating voltage is determined by the step S23 to determine the operation decelerating voltage. In the present embodiment, the above operations are performed repeatedly till an operation decelerating voltage is determined.
In summary, the operation decelerating voltage obtained in embodiments of the invention is acquired by sequentially evaluating the preoperation decelerating voltages with respect to the selected starting points for optimization of the decelerating voltage in the order of the nonuniformities of beam current density distribution from the smallest one to the biggest one, that is to say, if the preoperation decelerating voltage V_{1 }corresponding to the smallest nonuniformity of beam current density distribution x_{g1 }in the step S21 is determined as the operation decelerating voltage by the step S22 and the step S23, then the step S3 may be performed, namely, the ion implantation process is performed under the operation decelerating voltage V_{1}. If the preoperation decelerating voltage V_{1 }corresponding to the smallest nonuniformity of beam current density distribution x_{g1 }in the step S21 is not determined as the operation decelerating voltage by the step S22 and the step S23, then the preoperation decelerating voltage V_{2 }corresponding to the second smallest nonuniformity of beam current density distribution x_{g2 }is evaluated, and so on, till an operation decelerating voltage is determined.
After the operation decelerating voltage is determined by the steps S21, S22 and S23 in FIG. 3, the ion implantation process is performed on at least one base material under the determined operation decelerating voltage, preferably, the number of the base materials is 10, and of course, the number of the base materials may be increased or reduced as desired.
The ion implantation apparatus performs ion implantation process on the base material under the operation decelerating voltage determined according to the embodiment of the invention, the uniformity and stability of the ion beam is ensured, and thus uniformity of performances of the processed base materials in each batch or among various batches may be ensured, therefore, uniformity of performances of semiconductor devices made of the base materials may be ensured.
It should be understood that, the above embodiments are only exemplary embodiments employed to illustrate the principle of the invention, and the invention is not limited thereto. Persons skilled in the art can make various modifications and improvements without departing from the principle and substance of the invention, and these modifications and improvements should be considered to be within the protection scope of the invention.
Great research starts with great data.
Use the most comprehensive innovation intelligence platform to maximise ROI on research.
More Patents & Intellectual Property
 Structure and method for tensile and compressive strained silicon germanium with same germanium concentration by single epitaxy step
 Enterprise Patent & IP Solutions
 Improve R&D Innovation
 Intellectual Property (IP) Tools
 IP & Patent Strategies
 Market Intelligence for Innovation
 IP Data API
 Chemical Structure Search
 DNA Sequence Search
 Free Intellectual Property Courses
 IP & Patent Glossary