Great research starts with great data.

Learn More
More >
Patent Analysis of

Reusable carrier based polarization diversity for uplink of full-duplex radio-over-fiber system

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10003133

Application Number

US15/279842

Application Date

29 September 2016

Publication Date

19 June 2018

Current Assignee

TELEKOM MALAYSIA BERHAD

Original Assignee (Applicant)

TELEKOM MALAYSIA BERHAD

International Classification

H04B10/25,H04J14/06,H04B10/60,H01Q5/22,H04B10/2575

Cooperative Classification

H01Q21/24,H01Q1/2291,H01Q5/22,H04L5/14,H04W72/042

Inventor

KANESAN, THAVAMARAN,BINTI MASKURIY, FARHA,BIN ISMAIL, MOHD AZMI,BIN MOHAMAD NOR, MOHD HAFIZ,BIN MOHD HIZAN, HIZAMEL,BIN MOHAMAD, ROMLI,MITANI, SUFIAN MOUSA IBRAHIM

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10003133 Reusable carrier polarization diversity 1 US10003133 Reusable carrier polarization diversity 2 US10003133 Reusable carrier polarization diversity 3
See all images <>

Abstract

The present invention discloses a system for full-duplex data transmission using polarization multiplexing comprises a central station having a first means for processing downlink signals and a second means for processing uplink signals, and a remote antenna unit connected to the central station via a transmission medium, having a third means for processing downlink signals and a fourth means for processing uplink signals, characterised in that the remote antenna unit is configured to receive downlink signals from the central station, and then to split a portion of the downlink signals to be used as uplink data transmission simultaneously with transmission of the downlink.

Read more

Claims

1. A system for full-duplex data transmission using polarization multiplexing comprising: a central station having a first means for processing downlink signals and a second means for processing uplink signals; and a remote antenna unit connected to the central station via a transmission medium, having a third means for processing downlink signals and a fourth means for processing uplink signals, characterised in that the remote antenna unit is configured to receive downlink signals from the central station, and then to split a portion of the downlink signals to be used as uplink data transmission simultaneously with transmission of the downlink;wherein the first means of the central station includes: means for generating at least one wave carrier, means for splitting the generated wave carrier into at least two different polarization states, means for modulating at least one radio frequency signal into at least one of the polarization states, and means for multiplexing the at least two polarization states into the transmission medium; andwherein the second means of the central station includes: means for splitting multiplexed signals into at least two different polarization states, and means for converting the at least one of the signals into electrical signal; andwherein the third means of the remote antenna unit includes: means for splitting multiplexed signals into a first and second signals, the first signal is used for downlink transmission and the second signal is reused for uplink transmission, means for splitting the first and second signals into two polarization states, and means for converting the first signals into electrical signals, andwherein the fourth means of the remote antenna unit includes: means for modulating at least one radio frequency signal into at least one of the polarization states of the second signal of the third means, and means for multiplexing the at least two polarization states of the second signal into the transmission medium.

2. The system according to claim 1, further comprising means at both ends of the transmission medium for guiding the multiplexed signals to their designated path ways.

3. The system according to claim 2, wherein the means for guiding the multiplexed signals to their designated path ways is an optical circulator.

4. The system according to claim 1, further comprising means for amplifying the signals.

5. The system according to claim 1, wherein the third means and the fourth means of the remote antenna unit are coupled with at least one antenna for wireless data transmission.

6. The system according to claim 1, wherein the transmission medium is a fiber optic cable.

7. The system according to claim 1, wherein the means for generating at least one wave carrier is a Local Multipoint Distribution System (LMDS) Carrier Generator Module.

8. The system according to claim 1, wherein the means for splitting the generated wave carrier into at least two different polarization states is an optical polarization beam splitter.

9. The system according, to claim 1, wherein the means for modulating at least one radio frequency signal into at least one of the polarization states is an optical modulator.

10. The system according to claim 1, wherein the means for multiplexing the at least two polarization states into the transmission medium is an optical polarization beam combiner.

11. The system according to claim 1, wherein the means for converting the optical wave signals into electrical signal is a photodetector.

12. The system according to claim 1, wherein the wavelength of the uplink transmission and downlink transmission is the same.

13. The system according to claim 1, wherein each signal is split into carrier with x-polarization and carrier with y-polarization.

14. The system according to claim 1, wherein the radio frequency signal contained within the second signal is arranged in a way such that it avoids overlapping with the radio frequency signals received from the antennas.

15. The system according to claim 14, wherein the signal arranging process for a reuse LMDS carrier containing radio frequency signal at y-SOP includes the steps of: selecting a frequency different from the radio frequency signal of the DADS carrier for the radio frequency signal from the antenna so that the two radio frequency signals do not overlap with each other; and modulating, by the optical modulator, the radio frequency signal from the antenna into y-SOP of the of the LMDS carrier so that the two radio frequency signals are at y-SOP before transmitting back to the central station.

16. The system according to claim 14, wherein the signal arranging process for a reuse LMDS carrier containing radio frequency signal at x-SOP includes the steps of: selecting a frequency different from the radio frequency signal of the LMDS carrier for the radio frequency signal from the antenna so that the two radio frequency signals do not overlap with each other; and modulating, by the optical modulator, the radio frequency signal from the antenna into y-SOP of the of the LMDS carrier so that the two radio frequency signals are at y-SOP before transmitting back to the central station.

17. The system according to claim 1, wherein the system only operates with a polarization multiplexing apparatus.

18. The system according to claim 17, wherein the polarization multiplexing apparatus uses the same transmission medium for both uplink and downlink transmission.

19. The system according to claim 1, wherein unused or unwanted signals contained within the second signal is configured not to overlap with signals from the antennas so that radio frequency filter is no longer needed.

20. The system according to claim 1, wherein the system is configured to reuse a portion of the downlink signal as uplink transmission so that carrier generator such as laser at the remote antenna unit is no longer needed.

21. The system according to claim 1, wherein the system is configured to convert the radio frequency signals from the remote antenna unit at the central station and to directly modulate the incoming radio frequency signals from the antennas with the second signal so that radio frequency oscillator and/or radio frequency mixer are no longer needed.

Read more

Claim Tree

  • 1
    1. A system for full-duplex data transmission using polarization multiplexing comprising:
    • a central station having a first means for processing downlink signals and a second means for processing uplink signals
    • and a remote antenna unit connected to the central station via a transmission medium, having a third means for processing downlink signals and a fourth means for processing uplink signals, characterised in that the remote antenna unit is configured to receive downlink signals from the central station, and then to split a portion of the downlink signals to be used as uplink data transmission simultaneously with transmission of the downlink
    • wherein the first means of the central station includes: means for generating at least one wave carrier, means for splitting the generated wave carrier into at least two different polarization states, means for modulating at least one radio frequency signal into at least one of the polarization states, and means for multiplexing the at least two polarization states into the transmission medium
    • andwherein the second means of the central station includes: means for splitting multiplexed signals into at least two different polarization states, and means for converting the at least one of the signals into electrical signal
    • andwherein the third means of the remote antenna unit includes: means for splitting multiplexed signals into a first and second signals, the first signal is used for downlink transmission and the second signal is reused for uplink transmission, means for splitting the first and second signals into two polarization states, and means for converting the first signals into electrical signals, andwherein the fourth means of the remote antenna unit includes: means for modulating at least one radio frequency signal into at least one of the polarization states of the second signal of the third means, and means for multiplexing the at least two polarization states of the second signal into the transmission medium.
    • 2. The system according to claim 1, further comprising
      • means at both ends of the transmission medium for guiding the multiplexed signals to their designated path ways.
    • 4. The system according to claim 1, further comprising
      • means for amplifying the signals.
    • 5. The system according to claim 1, wherein
      • the third means and the fourth means of the remote antenna unit are coupled with at least one antenna for wireless data transmission.
    • 6. The system according to claim 1, wherein
      • the transmission medium is a fiber optic cable.
    • 7. The system according to claim 1, wherein
      • the means for generating at least one wave carrier is a Local Multipoint Distribution System (LMDS) Carrier Generator Module.
    • 8. The system according to claim 1, wherein
      • the means for splitting the generated wave carrier into at least two different polarization states is an optical polarization beam splitter.
    • 9. The system according, to claim 1, wherein
      • the means for modulating at least one radio frequency signal into at least one of the polarization states is an optical modulator.
    • 10. The system according to claim 1, wherein
      • the means for multiplexing the at least two polarization states into the transmission medium is an optical polarization beam combiner.
    • 11. The system according to claim 1, wherein
      • the means for converting the optical wave signals into electrical signal is a photodetector.
    • 12. The system according to claim 1, wherein
      • the wavelength of the uplink transmission and downlink transmission is the same.
    • 13. The system according to claim 1, wherein
      • each signal is split into carrier with x-polarization and carrier with y-polarization.
    • 14. The system according to claim 1, wherein
      • the radio frequency signal contained within the second signal is arranged in a way such that it avoids overlapping with the radio frequency signals received from the antennas.
    • 17. The system according to claim 1, wherein
      • the system only operates with a polarization multiplexing apparatus.
    • 19. The system according to claim 1, wherein
      • unused or unwanted signals contained within the second signal is configured not to overlap with signals from the antennas so that radio frequency filter is no longer needed.
    • 20. The system according to claim 1, wherein
      • the system is configured to reuse a portion of the downlink signal as uplink transmission so that carrier generator such as laser at the remote antenna unit is no longer needed.
    • 21. The system according to claim 1, wherein
      • the system is configured to convert the radio frequency signals from the remote antenna unit at the central station and to directly modulate the incoming radio frequency signals from the antennas with the second signal so that radio frequency oscillator and/or radio frequency mixer are no longer needed.
See all independent claims <>

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the priority benefit of Malaysian Patent Application No. PI 2016000131, filed Jan. 22, 2016, which is incorporated by reference in its entirety.

FIELD OF INVENTION

The invention relates to a reusing optical carrier in uplink transmission for multiple services of radio-over-fiber communication using polarization multiplexing technique.

BACKGROUND OF THE INVENTION

Radio-over-fiber (RoF) refers to a technology whereby light is modulated by a radio signal and transmitted over an optical fiber link to a remote antenna unit for facilitating wireless access. In a conventional ROF network, an optical transmitter converts radio signals into optical signals and transmits the optical signals through the optical fibers. At the other end of the optical fibers, an optical receiver is provided to convert the optical signals into radio signals. The drawbacks of the conventional remote antenna unit are as follows.

    • 1. Complexity of remote antenna unit (RAU): Complexity of RAU leads to increase in cost and power usage.
    • 2. Capacity of optical fiber is not fully utilised: The conventional system does not utilise all bandwidth of the optical fiber as it uses separate fiber or different wavelength in uplink and downlink data transmission.
    • 3. Different fiber cables for downlink and uplink transmission: in practise, separate fibers or different wavelength are used for downlink and uplink to avoid interference. However, this also leads to increase in cost and power usage.
    • 4. Signal collision: When multiple services are transmitting in a single system, there are possibilities that the signals will collide or interfere with each other.

Therefore, a need exists for the RAU to be designed with reduced components and less complexity due to multiple numbers of to be deployed at the residential or commercial area. The invention provides an economical and effective RAU system that implements a reuse carrier technique for full-duplex data transmission.

PRIOR ART

EP 2485418 A1 discloses a polarization multiplexing system specifically on sending and receiving method of modulation and demodulation of polarized multiplexing signal. It claims particularly on the receiving apparatus for optical polarization division multiplexing so as to reduce cross talk in optical signals at a receiving, between x-polarization and y-polarization. This patent focuses on the mechanism to precisely de-multiplex the received polarized multiplexing signal. However, it is not related to full-duplex multiplexing system using a reused local multipoint distribution system (LMDS) carrier.

U.S. Pat. No. 6,580,535 B1 discloses using two optical signals with same wavelength are polarization filtered at a sending end and multiplexed into orthogonal polarization orientations of a fiber. This polarization multiplexed signal is transmitted via optical data link (fiber) and to a receiving end having a splitter. However, this is only a half-duplex polarization multiplexing system and uses controller to control the polarization of the signals. It is not related to full-duplex multiplexing system using a reused local multipoint distribution system (LMDS) carrier.

U.S. Pat. No. 8,032,025 B2 discloses a system for monitoring polarization detection unit that receives the multiplexed optical signal and measures a polarization state of light received at the optical splitter and a power level of light associated with the RF tone signal. The system further contains a feedback control unit in communication with the optical polarization of the light at the optical splitter to optimize a separation of the first and second data channels for optimal detection. However, this is only a half-duplex polarization multiplexing system. It is related to lull duplex multiplexing system using a reused local multipoint distribution system (LMDS) carrier.

SUMMARY OF INVENTION

The invention provides a system for full-duplex data transmission using polarization multiplexing comprises a central station having a first means for processing downlink signals and a second means for processing uplink signals, and a remote antenna unit connected to the central station via a transmission medium, having a third means for processing downlink signals and a fourth means for processing uplink signals, characterised in that the remote antenna unit is configured to receive downlink signals from the central station, and then to split a portion of the downlink signals to be used as uplink data transmission simultaneously with transmission of the downlink.

Preferably, the first means of the central station includes means for generating at least one wave carrier, means for splitting the generated wave carrier into at least two different polarization states, means for modulating at least one radio frequency signal into at least one of the polarization states, and means for multiplexing the at least two polarization states into the transmission medium.

Preferably, the second means of the central station includes means for splitting multiplexed signals into at least two different polarization states, and means for converting the at least one of the signals into electrical signal.

Preferably, the third means of the remote antenna unit includes means for splitting multiplexed signals into a first and second signals, the first signal is used for downlink transmission and the second signal is re-used for uplink transmission, means for splitting the first and second signals into two polarization states, and means for converting the first signals into electrical signals.

Preferably, the fourth means of the remote antenna unit includes means for modulating at least one radio frequency signal into at least one of the polarization states of the second signal of the third means, and means for multiplexing the at least two polarization states of the second signal into the transmission medium.

Preferably, the transmission medium is a fiber optic cable.

Preferably, the means for generating at least one wave carrier is a Local Multipoint Distribution System Carrier Generator Module.

Preferably, the means for splitting the generated wave carrier into at least two different polarization states is an optical polarization beam splitter.

Preferably, the means for modulating at least one radio frequency signal into at least one of the polarization states is an optical modulator.

Preferably, the means for multiplexing the at least two polarization states into the transmission medium is an optical polarization beam combiner.

Preferably, the means for converting the optical wave signals into electrical signal is a photodetector.

Preferably, the wavelength of the uplink and downlink are the same.

Preferably, each signal is split into carrier with x-polarization and carrier with y-polarization.

Preferably, the third means and the fourth means of the remote antenna unit are coupled with at least one antenna for wireless data transmission.

In one embodiment of the invention, the system may further comprise means at both ends of the transmission medium for guiding the multiplexed signals to their designated path ways. The means for guiding the multiplexed signals to their designated path ways can be an optical circulator.

In another embodiment of the invention, the system may further comprise means for amplifying the signals. The means for amplifying the signals can be optic amplifying module.

One skilled in the art will readily appreciate that the invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments described herein are not intended as limitations on the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawing the preferred embodiments from an inspection of which when considered in connection with the following description, the invention, its construction and operation and many of its advantages would be readily understood and appreciated.

FIG. 1 illustrates a general full-duplex polarization multiplexing (Pol-Mux) system covering central station (CS) and remote antenna unit (RAU).

FIG. 2 illustrates the detail of the full-duplex Pol-Mux system.

FIG. 3 illustrates the optical domain and electrical domain representation of the x-SOP and y-SOP configuration for the downlink and uplink transmission.

FIG. 4 illustrates the process for transmitting and receiving radio frequency (RF) signal in RF domain depending on the antenna arrangement.

FIG. 5 is a flow chart diagram illustrating the downlink signal processing process of the CS.

FIG. 6 is a flowchart diagram illustrating the downlink signal processing process of the RAU.

FIG. 7 is a flow chart diagram illustrating the uplink signal processing process of the RAU.

FIG. 8 is a flow chart diagram illustrating the uplink signal processing process of the CS.

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described in greater detail, by way of example, with reference to the drawings.

FIG. 1 and FIG. 2 show an exemplary embodiment of a full-duplex Pol-Mux system. The system comprises a CS 101, a RAU 103 linked to the CS 101 via a transmission medium 102, and a circulator 222, 223 at both end of the cable to guide the optical signal for downlink and uplink at their respective path. The transmission medium 102 can be fiber optic cable, glass conduit, waveguide, light frequency transmission line or even natural interface such as vacuum, liquid, or gas. Preferably, the transmission medium 102 is a single mode fiber.

The CS 101 includes a downlink optical microwave signal processing unit 104 and an uplink optical microwave signal processing unit 105.

Preferably, the downlink optical microwave signal process unit 104 of CS 101 comprises:

    • i. a local multipoint distribution system (LAMS) carrier generator module 201 for generating high frequency millimeter wave carrier;
    • ii. an optical polarization beam splitter (PBS) 202 for splitting the LMDS optical carrier into two different states of polarization (SOP), which is x-SOP and y-SOP, the x-SOP is LMDS optical carrier with x-polarization 003, while y-SOP is LMDS optical carrier with y-polarization 002;
    • iii. two optical modulators 203, 204 for modulating RF signals from different sources with x-SOP and y-SOP optical carrier; the modulated optical signals A, fA is RF signal A, fA 205 mixed with the y-SOP LMDS optical carrier; while the modulated optical signals B, fB is RF signal B, fB 206 mixed with the x-SOP LMDS optical carrier; and
    • iv. an optical polarization beam combiner (PBC) for multiplexing the modulated optical signal A, fA and the modulated optical signal B, fB into a single fiber medium of the fiber optic cable 102.

Preferably, the uplink optical microwave signal processing unit 105 comprises:

    • i. a PBS 224 for splitting the uplink signal from the RAU 103 into the two different states of polarization (SOP);
    • ii. two optic amplifying modules 225, 226 for amplifying the polarised uplink signals; and
    • iii. two photodetectors 227, 228 for converting the amplified and polarised uplink signals into electrical signals.

The RAU 103 includes a downlink optical microwave signal processing unit 106 and an uplink optical microwave signal processing unit 107.

Preferably, the optical microwave signal processing unit 106 of RAU 103 includes an optical splitter 208 for splitting the multiplexed optical signal from the CS 101 into two-routes; the first route is for downlink and the second route is for uplink. The first route comprises:

    • i. a PBS 209 for splitting the received signal into x-SOP signal and y-SOP signal;
    • ii. two photodetectors 211, 212 for converting the two signals into electrical signals;
    • iii. two RF amplifying modules 213, 214 for amplifying the respective signal in electrical domain; and
    • iv. two RF antennas 215, 216 used to convert the RF signals before transmitting wireless into the air.

The second route comprises:

    • i. a PBS 210 for splitting the received signal into x-SOP signal and y-SOP signal where y-SOP is up-converted of RP signal A, fA at LMDS carrier and x-SOP is up-converted of RF signal B, fB at LMDS carrier, the two signals is directed to the uplink optical microwave signal processing unit 107.

The uplink optical microwave signal processing unit comprises:

    • ii. two antennas 229, 230, for receiving the up-converted RF signal A, fA and up-converted RF signal B, fB from the air;
    • iii. two RF amplifying module 219, 220 for amplifying the up-converted RF signal A, FA and up-converted RF signal B, fB; a band pass filter at the desired band can be inserted between the antennas 229, 230, and the amplifier 219, 220, to filter out unwanted signal;
    • iv. two optical modulators 217, 218 to modulate the up-converted RF signals, fA with up-converted of RF signal A, fA, and up-converted of RF signal B, fB at LMDS carrier;
    • v. a PBC 221 to multiplex the modulated uplink at x-SOP, and modulate uplink at y-SOP into the fiber optic cable.

The output of signal processed by each modules of the system is illustrated in FIG. 3 as follows:

    • 001 is the LMDS 25 GHz carrier generated from the OCS;
    • 002 is the LMDS optical carrier with y-polarization (y-SOP);
    • 003 is the LMDS optical carrier with x-polarization (x-SOP);
    • 004 is RF signal A, fA mixed with y-SOP LMDS optical carrier;
    • 005 is RF signal B, fB mixed with x-SOP LMDS optical carrier;
    • 006 is multiplexed optical signal, consist of RF signal A, fA mixed with y-SOP LMDS optical carrier, 004 and RF signal B, fB mixed with x-SOP LMDS optical carrier, 005;
    • 007 is the downlink multiplexed optical signal 006 with reduced power splitted by optical splitter;
    • 008 is the downlink multiplexed optical signal 006 with reduced power splitted by optical splitter 208 to be used as uplink reuse LMDS carrier;
    • 009 is the up-converted of RF signal A, fA at LMDS carrier at y-SOP;
    • 010 is the up-converted of RF signal B, fB at LMDS carrier at x-SOP;
    • 011 is similar to 009 and to be used as uplink reuse LMDS carrier;
    • 012 is similar to 010 and to be used as uplink reuse LMDS carrier;
    • 013 is 009 after converted into electrical signal via the photodetector 211;
    • 014 is 010 after converted into electrical signal via the photodetector 212;
    • 015 is the received signal A, fA with LMDS electrical carrier from antenna 229;
    • 016 is the received signal B, fB with LMDS electrical carrier from antenna 230;
    • 017 is the 011 from the reuse downlink signal with RF signals A, fA combined with received signal B, fB with LMDS electrical carrier 016, the black lines represent the reuse downlink signal with RF signals A, fA, 011;
    • 018 is the 012 from the reuse downlink signal and RF signals B, fB combine with received signal A, fA with LMDS electrical carrier 015 from the receiving antenna 230; grey lines represent received signal A, fA with LMDS electrical carrier 015, while black lines represent the reuse downlink signal and RF signals B, fB 012;
    • 019 is the multiplexed optical signal for uplink consists of 017 and 018 by the PBC 221 into the fiber optic 102; grey lines represent the received signals from antenna while back lines represent the reuse downlink signals;
    • 020 is the RF signal A, fA and RF signal B, fB mixed with LMDS electrical carrier in the air;

FIG. 4 represents the way to transmit and to receive the RF signal in RF domain depending on the antenna arrangement; where;

401 is an up-converted RF signal A, fA, at LMDS frequency band, before transmitting to the air by transmitter antenna 215; 401 can be represented by 013 of FIG. 3;

402 is an up-converted RF signal B, fB at LMDS frequency band, before transmitting to the air by transmitter antenna 216; 402 can be represented by 014 of FIG. 3;

403 is an up-converted RF signal A, fA and RF signal B, fB in the air transmission medium; 403 can be represented by 020 of FIG. 3;

404 is an up-converted RF signal A, fA, at LMDS frequency band at receiving antenna 229; 404 can be represented by 015 of FIG. 3;

405 is an up-converted RF signal B, fB at LMDS frequency band at receiving antenna 230; 405 can be represented by 016 of FIG. 3;

406 is an up-converted RF signal A, fA and RF signal B, fB at LMDS frequency band in the fiber upon uplink transmission as multiplexed optical signal for uplink; 406 can be represented by 019 of FIG. 3;

FIG. 5 illustrates the signal transmission in the downlink optical microwave signal processing unit 104 of CS 101. In the first step, the LMDS optical carrier 001 is generated by using a technique called optical carrier suppression (OCS). In the second step, the LMDS optical carrier 001 from the OCS is split into two signals with different state of polarization, y-SOP 002 and x-SOP 003 by using the PBS 202. In the third step, the RF signal A, fA 205 is mixed with y-SOP by optical modulator 203, and the RF signal B, fB 206 is mixed with x-SOP by optical modulator 204. In the fourth step, the RF signal A, fA mixed with y-SOP LMDS optical carrier 004 and RF signal B, fB mixed with x-SOP LMDS optical carrier 005 are combined or multiplexed into the single fiber optic cable medium but at different polarization axis by using PBC 207, the multiplexed signals are transmitted to the RAU.

FIG. 6 illustrates the signal transmission in the downlink optical microwave signal processing unit 106 of RAU 103. Upon the multiplexed signal 006 reaches the RAU 103, the optical splitter 208 split the optical signal into two different routes at any splitting ratio depending on the signal link budget. At the first route, the multiplexed optical signal is split back into their polarized signals x-SOP 010 and y-SOP 009 using PBS 209. In the third step, these polarized signals are converted by their respective photodetectors 211, 212 into RF signal A, fA 013 and RF signal B, fB 014 which were carried by LADS carrier. In the fourth step, the RF signals 013, 014 are amplified respectively by the RF amplifying modules 213, 214. In the final step, the amplified RF signals 013, 014 are transmitted through air (wirelessly) represented by 020 at respective frequency with no overlapping of spectrum via antennas 215, 216.

FIG. 7 illustrates the signal transmission in the uplink optical microwave signal processing unit 107 of RAU 103. After the optical splitter 208 of the downlink processing unit 106 splits the received signal in two portions, one portion will be reused for the uplink carrier signal transmission. Preferably, the signal is split into two equal power signals 007, 008 by the optical splitter 208. It should be noted that the signal can be divided into different ratio depending on the applications or the business packages provided by the service provider. The Signal 008 is split again by PBS 210, into y-SOP and x-SOP signal where x-SOP is up-converted of RF signal B, fB at LMDS carrier 012, and y-SOP is up-converted of RF signal A, fA at LMDS carrier 011 respectively. The RF signal A, fA 015 and the RF signal B, fB 016 are signals which received from the antenna 229, 230 and being amplified by RF amplifying modules 219, 220. In one embodiment, the band pass filter at the desired band is inserted between antennas 229, 230 and amplifiers 219, 220 to filter out unwanted signal. The received RF signals A, fA 015, is then modulated with the LMDS carrier at x-SOP containing RF signals B, fB 012, and the received RF signal B, fB 016 is modulated with LMDS carrier at y-SOP 012 containing RF signals A, fA 011 by using optical modulators 217, 218. Thus, for the uplink transmission, the reuse downlink signal RF signal B, fB at LMDS carrier at x-SOP 012 with the received signal A, fA 015 with LMDS electrical carrier from antenna 229 is hereinafter referred to as modulated uplink at x-SOP 018; the reuse downlink signal RF signal A, fA at LMDS carrier at y-SOP 011 with the received signal B, fB 016 with LMDS electrical carrier from antenna 230 is hereinafter referred to as modulated uplink at y-SOP 017. The modulated uplink at y-SOP and modulated uplink at x-SOP 018 are then combined at the PBS 221 and multiplexed back into the fiber optic cable 102 via a circulator 222 as uplink transmission. The received signals from the antennas 229, 230 will not interfere with signals in the LMDS carrier due to different polarization and frequency allocation.

FIG. 8 illustrates the signal transmission in the uplink optical microwave signal processing unit 105 of CS 101. The multiplexed optical signal from the RAU 103 is split back into their polarised signals x-SOP and y-SOP using PBS 224. These polarised signals are then amplified using optic amplifying modules 225, 226. Finally, the amplified and polarised signals are converted to electrical signals by their respective photodetectors 227, 228.

The present disclosure includes as contained in the appended claims, as well as that of the foregoing description. Although this invention has been described in its preferred form with a degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangements of parts may be resorted to without departing from the scope of the invention.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

24.0/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

32.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

74.0/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

52.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

21.0/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Polarization division multiplexing in optical data transmission systems TELEFONAKTIEBOLAGET LM ERICSSON 28 December 1999 17 June 2003
Receiver, sending device, system of optic-demodulation of polarization multiplexing and method thereof HUAWEI TECHNOLOGIES CO., LTD. 22 October 2010 08 August 2012
Method for transmitting at least one first and second data signal in polarization multiplex in an optical transmission system XIEON NETWORKS S.A.R.L. 07 July 2003 01 December 2005
Receiver Algorithms for Coherent Detection of Polarization-Multiplexed Optical Signals PROVENANCE ASSET GROUP LLC 18 December 2009 23 June 2011
Optical network terminal and wavelength division multiplexing based optical network having the same ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE 06 December 2004 09 June 2005
See full citation <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10003133 Reusable carrier polarization diversity 1 US10003133 Reusable carrier polarization diversity 2 US10003133 Reusable carrier polarization diversity 3