Great research starts with great data.

Learn More
More >
Patent Analysis of

Hybrid transformation system based on three-phase PWM rectifier and multi-unit uncontrolled rectifier and control method thereof

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10003253

Application Number

US15/570378

Application Date

21 July 2015

Publication Date

19 June 2018

Current Assignee

SOUTH CHINA UNIVERSITY OF TECHNOLOGY

Original Assignee (Applicant)

SOUTH CHINA UNIVERSITY OF TECHNOLOGY

International Classification

H02J1/10,H02M1/00,H02M7/08,H02M5/42,H02M7/04

Cooperative Classification

H02M1/4216,H02M7/219,H02M2001/4283,Y02B70/126,Y02P80/112

Inventor

DU, GUIPING,LIU, ZHIFEI,ZHU, TIANSHENG

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10003253 Hybrid transformation 1 US10003253 Hybrid transformation 2 US10003253 Hybrid transformation 3
See all images <>

Abstract

The present invention discloses a hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier. The hybrid transformation system mainly consists of a three-phase reactor (L), a three-phase voltage type PWM rectifier module, an N-unit three-phase uncontrolled rectifier bridge module group, capacitors (C0-CN) and a DSP control circuit. An input end of the three-phase voltage type PWM rectifier module is in parallel connection with an input end of each three-phase uncontrolled rectifier bridge module. The three-phase voltage type PWM rectifier module may work in to situations, with load or without load, and the three-phase voltage type PWM rectifier module just does reactive power compensation when working without load. All modules of the three-phase uncontrolled rectifier bridge module group may work in to situations, with loads independently or all the outputs are in parallel connection and with a same load. The hybrid rectifier system has advantages such as unity input power factor, grid side current low harmonic, high power output, low cost, easy control, and etc.

Read more

Claims

1. A control method for a hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier, wherein the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier comprises: a three-phase reactor (L), a three-phase voltage type PWM rectifier module, an N-unit three-phase uncontrollable rectifier bridge module group, a plurality of capacitors (C0-CN), and a DSP control circuit, wherein the three-phase reactor at an end is connected to a three-phase power grid, other ends (A, B, C) of the three-phase reactor are connected to a middle of a bridge arm of a three-phase voltage type PWM rectifier module and a middle of a bridge arm of each three-phase uncontrolled rectifier bridge module, respectively, that is, the three-phase voltage type PWM rectifier module is connected in parallel to an input end of each three-phase uncontrollable rectifier bridge module, wherein the three-phase voltage type PWM rectifier module uses a six-switch three-phase half-bridge circuit topology, wherein in the N-unit three-phase uncontrollable rectifier bridge module group, each three-phase uncontrolled rectifier bridge module consists of a three-phase diode rectifier bridge, wherein the DSP control circuit controls a voltage output at DC side and a grid side power factor of the three-phase voltage type PWM rectifier module and the N-unit three-phase uncontrollable rectifier bridge module group, wherein the control method comprises: a) using a phase-locking circuit to obtain a zero crossing point of an a-phase power grid (ea), the DSP control circuit real-time computing a cycle of the power grid according to the zero crossing point of the a-phase power grid (ea) and thereby changing a control cycle, meanwhile calculating a plurality of voltage values of the three-phase input power grid (ea, eb, ec) according to the zero crossing point of the a-phase power grid (ea); b) sampling a plurality of input current values (ia, ib, ic) of the three-phase reactor using a hall current transducer, respectively, sampling a DC voltage value (U*) at both sides of the capacitor (C0) at DC side of the three-phase voltage type PWM rectifier module using a partial voltage method, and switching to a voltage of 0 to 3V by conditioning an operational circuit; and c) the DSP control circuit conducting a control computation according to the values sampled in a) and b), a specific control method using commonly used feed-forward decoupling control, current predictive control, fuzzy control to realize control of unity power factor, wherein under the various work modes and different levels of power output, the same control method can be used without independent adjustment.

2. The control method for the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to claim 1, wherein an output of the transformation system has a plurality of alternative work modes: 1) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same first load (RL) and a same first capacitor (CL) to realize parallel connection, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a second capacitor (C0); 2) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same first load (RL) and a same first capacitor (CL) to realize parallel connection, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a second capacitor (C0) and a second load (R*); 3) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with loads (R1-RN), respectively, each load is in parallel connection with one capacitor (C1-CN), respectively, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a second capacitor (C0); or 4) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with the loads (R1-RN), respectively, each load is in parallel connection with one capacitor (C1-CN), respectively, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a second capacitor (C0) and a second load (R*).

3. The control method for the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to claim 1, wherein an inductance value of the three-phase reactor (L) is capable of being selected according to requirements of a harmonic and a power of the system, with a select range of 0.1 mH to 1.5 mH; and a capacitance of each capacitor (C0, CL, C1 . . . CN) is selected according to requirements of an output voltage ripple of the system, with a select range of 2000 uf to 6000 uf.

Read more

Claim Tree

  • 1
    1. A control method for a hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier, wherein
    • the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier comprises: a three-phase reactor (L), a three-phase voltage type PWM rectifier module, an N-unit three-phase uncontrollable rectifier bridge module group, a plurality of capacitors (C0-CN), and a DSP control circuit, wherein the three-phase reactor at an end is connected to a three-phase power grid, other ends (A, B, C) of the three-phase reactor are connected to a middle of a bridge arm of a three-phase voltage type PWM rectifier module and a middle of a bridge arm of each three-phase uncontrolled rectifier bridge module, respectively, that is, the three-phase voltage type PWM rectifier module is connected in parallel to an input end of each three-phase uncontrollable rectifier bridge module, wherein the three-phase voltage type PWM rectifier module uses a six-switch three-phase half-bridge circuit topology, wherein in the N-unit three-phase uncontrollable rectifier bridge module group, each three-phase uncontrolled rectifier bridge module consists of a three-phase diode rectifier bridge, wherein the DSP control circuit controls a voltage output at DC side and a grid side power factor of the three-phase voltage type PWM rectifier module and the N-unit three-phase uncontrollable rectifier bridge module group, wherein the control method comprises:
    • 2. The control method for the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to claim 1, wherein
      • an output of the transformation system has a plurality of alternative work modes: 1) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same first load (RL) and a same first capacitor (CL) to realize parallel connection, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a second capacitor (C0); 2) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same first load (RL) and a same first capacitor (CL) to realize parallel connection, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a second capacitor (C0) and a second load (R*); 3) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with loads (R1-RN), respectively, each load is in parallel connection with one capacitor (C1-CN), respectively, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a second capacitor (C0); or 4) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with the loads (R1-RN), respectively, each load is in parallel connection with one capacitor (C1-CN), respectively, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a second capacitor (C0) and a second load (R*).
    • 3. The control method for the hybrid transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to claim 1, wherein
      • an inductance value of the three-phase reactor (L) is capable of being selected according to requirements of a harmonic and a power of the system, with a select range of 0.1 mH to 1.5 mH; and a capacitance of each capacitor (C0, CL, C1 . . . CN) is selected according to requirements of an output voltage ripple of the system, with a select range of 2000 uf to 6000 uf.
See all independent claims <>

Description

CROSS-REFERENCE TO RELATED APPLICATION

This application is a 371 of international application of PCT application serial no. PCT/CN2015/084674, filed on Jul. 21, 2015, which claims the priority benefit of China application no. 201510219268.9, filed on Apr. 30, 2015. The entirety of each of the abovementioned patent applications is hereby incorporated by reference herein and made a part of this specification.

FIELD OF THE INVENTION

The present invention relates to three-phase rectifier technology, and particularly relates to a hybrid AC/DC (Alternating Current/Direct Current) transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier, belonging to a technical field of power electronic communication.

DESCRIPTION OF RELATED ART

With the development of industrial and economic technologies, requirements of high power supply are also getting higher and higher. The traditional high power supply has a high harmonic and a low power factor, which not only has a great impact on the power grid but will also cause great losses. In order to achieve a unity power factor, an active power filter, PFC (Power Factor Correction), and a three-phase voltage type PWM (Pulse Width Modulation) rectifier are usually used. In particular, the three-phase voltage type PWM rectifier may eliminate an input current harmonic fundamentally and has a unit power factor, thereby attracting extensive attention from the power electronic field currently. However, it cannot be universal used because of technical difficulties such as high cost, circulation existing in multi-machine paralleling.

BRIEF SUMMARY OF THE INVENTION

Aiming at problems currently existing in improving high power supply ha ionic and power factor, an object of the present invention is to provide a high-power hybrid AC/DC transformation system that is stable and reliable, low cost, with low current harmonic and unity power factor.

In order to achieve the above-described object, the technical solution adopted in the present invention is as follows:

a hybrid AC/DC transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier, comprises: a three-phase reactor, a three-phase voltage type PWM rectifier module, an N-unit three-phase uncontrollable rectifier bridge module group, capacitors, and a DSP (Digital Signal Processing) control circuit. The three-phase reactor at an end is connected to a three-phase power grid, other ends are connected to a middle of a bridge arm of a three-phase voltage type PWM rectifier module and a middle of a bridge arm of each three-phase uncontrollable rectifier bridge module, that is, the three-phase voltage type PWM rectifier module is connected in parallel to an input end of the N-unit three-phase uncontrollable rectifier bridge module group. The three-phase voltage type PWM rectifier module uses a six-switch three-phase half-bridge circuit topology. Each module of the three-phase uncontrolled rectifier module group consists of a three-phase diode rectifier bridge module group.

An output of the transformation system has a plurality of alternative work modes: (1) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same load RL and a same capacitor CL to realize parallel connection, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a capacitor C0; (2) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same load RL and a same capacitor CL to realize parallel connection, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a capacitor C0 and a load R*; (3) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with loads (R1 . . . RN), respectively, each load is in parallel connection with capacitors (C1 . . . CN), respectively, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a capacitor C0; or (4) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with the loads (R1 . . . RN), respectively, each load is in parallel connection with capacitors (C1 . . . CN), respectively, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a capacitor C0 and a load R*.

An inductance value of the three-phase reactor may be selected according to requirements of a harmonic and a power of the system, and preferably its range is 0.1 mH to 1.5 mH. A capacitance of the capacitor is selected according to requirements of an output voltage ripple of the system, and preferably its range is 2000 uf to 6000 uf.

A control method for the above-described hybrid AC/DC transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier is: (a) using a phase-locking circuit to obtain a zero crossing point of a-phase power grid ea, the DSP real-time computing a cycle of the power grid according to the zero crossing point of the a-phase power grid ea and thereby changing a control cycle, meanwhile calculating three-phase input power grid voltage values (ea, eb, ec) according to the zero crossing point of the a-phase power grid ea; (b) sampling input current values (ia, ib, ic) of the three-phase reactor using a hall current transducer, respectively, sampling a DC voltage value U* at both sides of the capacitor C0 at DC side of the three-phase voltage type PWM rectifier module using a partial voltage method, and switching to a voltage of 0 to 3V by conditioning an operational circuit; and (c) the DSP control circuit conducting a control computation according to sampled values (obtained in (a) and (b)), a specific control method may uses commonly used feed-forward decoupling control, current predictive control, fuzzy control to realize control of unity power factor. Under the various work modes and different levels of power output, the same control method may be used without independent adjustment, which is simple and easy.

Compared with the prior art, the beneficial effects of the present invention are as follows:

1. Low Cost and High Efficiency.

The present system only needs to control one three-phase voltage type PWM rectifier module, and the three-phase uncontrolled rectifier module in parallel connection can be added or subtracted according to requirements of work, resulting in low cost and high efficiency.

2. Realization of Controllability of an Output Voltage at DC Side of the Three-Phase Uncontrolled Rectifier Module.

The present system controls an input side voltage of the three-phase voltage type PWM rectifier module by controlling a reactor input current at AC side, thereby realizing controllability of the output voltage at DC side of the three-phase voltage type PWM rectifier module. Since in the present system, the three-phase voltage type PWM rectifier module is connected in parallel to an input end of the N-unit three-phase uncontrolled rectifier module group, the controllability of the output voltage at DC side of the N-unit three-phase uncontrolled rectifier module group may be realized.

3. Input Unity Power Factor.

The present system directly controls the reactor input current at AC side by the three-phase voltage type PWM rectifier module, and indirectly controls an AC input side current of the three-phase voltage type PWM rectifier module, thereby adjusting reactive power compensation of the three-phase voltage type PWM rectifier module to the system, realizing operation of AC input side unity power factor.

4. The System is Reliable and Stable, and No Circulation Exists.

The present system contains the three-phase uncontrolled rectifier module. Since a single phase conductivity of the diode, the system cannot generate circulation. Since the system only needs to control one three-phase voltage type PWM rectifier module, it is more reliable and stable compared to the existing system that needs to control two or more three-phase voltage type PWM rectifier modules.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a structural block diagram of a hybrid AC/DC transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to the present invention.

FIG. 1b is a structure chart of a three-phase voltage type PWM rectifier module.

FIG. 1c is a unit structure diagram of a three-phase uncontrolled rectifier module.

FIG. 1d is a structure chart of an N-unit three-phase uncontrolled rectifier bridge module group with load respectively.

FIG. 1e is a structure chart of a three-phase voltage type PWM rectifier module with load.

FIG. 2a to FIG. 2c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage Uo (output voltage at DC side when the N-unit three-phase uncontrolled rectifier bridge module group is in parallel connection) and an input voltage ea (power grid a-phase voltage), an input current ia (AC input a-phase current) of MATLAB simulation, working in mode (1), respectively.

FIG. 3a to FIG. 3c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage Uo (output voltage at DC side when the N-unit three-phase uncontrolled rectifier bridge module group is in parallel connection) and an input voltage ea (power grid a-phase voltage), input current ia (a-phase input current at AC side) of MATLAB simulation, working in mode (2), respectively.

FIG. 4a to FIG. 4c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage UoN (respective output voltage at DC side of the N-unit three-phase uncontrolled rectifier bridge module) and an input voltage ea (power grid a-phase voltage), input current ia (a-phase input current at AC side) of MATLAB simulation, working in mode (3), respectively.

FIG. 5a to FIG. 5c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage UoN (respective output voltage at DC side of the N-unit three-phase uncontrolled rectifier bridge module) and an input voltage ea (power grid a-phase voltage), an input current is (a-phase input current at AC side) of MATLAB simulation, working in mode (4), respectively.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is further described in detail below in combination with accompanying drawings and specific embodiments, but implementations and protection of the present invention are not limited hereto. If there is anything that is not specified, it can be realized by a person skilled in the art according to the prior art.

A hybrid AC/DC transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier, as shown in FIG. 1, comprises: a three-phase reactor L, a three-phase voltage type PWM rectifier module rectifying circuit, an N-unit three-phase uncontrollable rectifier bridge module group, capacitors (C0, CL, C1 . . . CN), and a DSP control circuit, wherein N≥1. The three-phase reactor at an end is connected to a three-phase power grid, other ends (A, B, C) are connected to a middle of a bridge arm of the three-phase voltage type PWM rectifier module and a middle of a bridge arm of each three-phase uncontrollable rectifier bridge module group, respectively, that is, the three-phase voltage type PWM rectifier module is connected in parallel to an input end of the N-unit three-phase uncontrollable rectifier bridge module group. The three-phase voltage type PWM rectifier module uses a six-switch three-phase half-bridge circuit topology. Each module of the three-phase uncontrolled rectifier module group consists of a three-phase diode rectifier bridge module group.

An output of the transformation system has a plurality of alternative work modes: (1) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same load RL and a same capacitor CL to realize parallel connection, while the three-phase voltage type PWM rectifier module works without load, and the three-phase voltage type PWM rectifier module output is connected only to a capacitor C0; (2) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is connected to a same load RL and a same capacitor CL to realize parallel connection, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of the three-phase voltage type PWM rectifier module is in parallel connection with a capacitor C0, and a load R*; (3) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with loads (R1 . . . RN), respectively, each load is in parallel connection with capacitors (C1 . . . CN), respectively, while the three-phase voltage type PWM rectifier module works without load, and an output of the three-phase voltage type PWM rectifier module is connected only to a capacitor C0; or (4) in the N-unit three-phase uncontrollable rectifier bridge module group, an output end of each three-phase uncontrolled rectifier bridge module is independently with the loads (R1 . . . RN), respectively, each load is in parallel connection with capacitors (C1 . . . CN), respectively, while the three-phase voltage type PWM rectifier module works with load, and at this moment, an output of three-phase voltage type PWM rectifier module is in parallel connection with a capacitor C0, and a load R*. When the three-phase voltage type PWM rectifier module works without load, it just does reactive power compensation at this moment; when it works with load, it not only does reactive power compensation, but also does power output.

An inductance value of the three-phase reactor L may be selected according to requirements of a harmonic and a power of the system, and preferably its range is 0.1 mH to 1.5 mH. A capacitance of the capacitor (C0, CL, C1 . . . CN) is selected according to requirements of an output voltage ripple of the system, and preferably its range is 2000 uf to 6000 uf.

A control method for the hybrid AC/DC transformation system based on three-phase voltage type PWM rectifier and multi-unit uncontrolled rectifier according to any of the above is: (a) using a phase-locking circuit to obtain a zero crossing point of an a-phase power grid ea, the DSP real-time computing a cycle of the power grid according to the zero crossing point of the a-phase power grid ea, and thereby changing a control cycle, meanwhile calculating three-phase input power grid voltage values (ea, eb, ec) according to the zero crossing point of the a-phase power grid ea; (b) sampling input current values (ia, ib, ic) of the three-phase reactor using a hall current transducer, respectively, sampling a DC voltage value U* at both sides of the capacitor C0 at DC side of the three-phase voltage type PWM rectifier module using a partial voltage method, and switching to a voltage of 0 to 3V by conditioning an operational circuit; and (c) the DSP control circuit conducting a control computation according to sampled values (obtained in (a) and (b)), a specific control method may uses commonly used feed-forward decoupling control, current predictive control, fuzzy control to realize control of unity power factor. Under the various work modes and different levels of power output, the three-phase voltage type PWM rectifier module may use the same control method without independent adjustment, which is simple and easy.

Preferably, the DSP may select and use Texas Instruments 2000 series.

FIG. 2a to FIG. 2c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage Uo (output voltage at DC side when the N-unit three-phase uncontrolled rectifier bridge module group is in parallel connection) and an input voltage ea (power grid a-phase voltage), an input current ia (AC input a-phase current) of MATLAB simulation, working in mode (1), respectively.

FIG. 3a to FIG. 3c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage Uo (output voltage at DC side when the N-unit three-phase uncontrolled rectifier bridge module group is in parallel connection) and an input voltage ea (power grid a-phase voltage), input current ia (a-phase input current at AC side) of MATLAB simulation, working in mode (2), respectively.

FIG. 4a to FIG. 4c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage UoN (respective output voltage at DC side of the N-unit three-phase uncontrolled rectifier bridge module) and an input voltage ea (power grid a-phase voltage), input current ia (a-phase input current at AC side) of MATLAB simulation, working in mode (3), respectively.

FIG. 5a to FIG. 5c are effect pictures of an output voltage U* (output voltage at DC side of the three-phase voltage type PWM rectifier module), an output voltage UoN (respective output voltage at DC side of the N-unit three-phase uncontrolled rectifier bridge module) and an input voltage ea (power grid a-phase voltage), an input current ia (a-phase input current at AC side) of MATLAB simulation, working in mode (4), respectively.

Accordingly, a waveform of an output voltage of a three-phase controllable rectifier is consistent with that of the three-phase uncontrolled rectifier module, and both ripples are very small. At the same time, a grid side current well tracks a grid side voltage, phases of both are the same and both are sine wave.

A person skilled in the art can make various amendments or supplements, or replacements by a similar way to the specific embodiments without going against the principle and spirit of the present invention, but these alterations all fall into the scope of protection of the present invention. Thus the scope of technology of the present invention is not limited to the above-described embodiments.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

25.46/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

49.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

71.53/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

53.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

20.84/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Autotransformer AC/DC converter ARTUS 09 February 2007 08 November 2007
Eighteen Pulse Rectification Scheme For Use With Variable Frequency Drives YASKAWA AMERICA, INC. 02 September 2010 08 September 2011
基于全桥结构的三相单级功率因数校正电路 哈尔滨工业大学 02 August 2007 09 January 2008
三相电压型功率因数校正变换器的自适应控制方法 西安理工大学 24 May 2013 11 September 2013
Transfer circuit topology for redundant power generator regulators and inverting DC drives GENERAL ELECTRIC COMPANY 27 January 2004 28 July 2005
See full citation <>

More like this

Title Current Assignee Application Date Publication Date
Low-cost dimming driver circuit with improved power factor TECHNICAL CONSUMER PRODUCTS, INC.,CHEN, TIMOTHY,HAAS, DANIEL, ALBERT 06 January 2016 27 October 2016
DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods PHILIPS LIGHTING HOLDING B.V. 08 February 2017 17 August 2017
Ac-to-DC converter system ABB SCHWEIZ AG 04 May 2017 09 November 2017
Converter and power conversion device MITSUBISHI ELECTRIC CORPORATION 11 March 2015 15 September 2016
Method to reduce inrush currents in a transformer-less rectifier uninterruptible power supply system LIEBERT CORPORATION 22 February 2017 31 August 2017
Power converter and associated electrical grid THALES 24 May 2016 01 December 2016
Devices, systems, and methods for adjusting output power using synchronous rectifier control QUALCOMM INCORPORATED 25 January 2017 24 August 2017
一种三相整流升压电路及其控制方法以及不间断电源 漳州科华技术有限责任公司 13 August 2015 09 December 2015
An ac/DC PFC converter using a half bridge resonant converter, and corresponding conversion method PHILIPS LIGHTING HOLDING B.V. 23 March 2017 05 October 2017
一种具有功率因数校正功能的反激式电源 福建捷联电子有限公司 29 September 2012 22 July 2015
Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters EMERSON ELECTRIC CO. 14 April 2017 19 October 2017
Active rectifier for downhole applications BAKER HUGHES INCORPORATED 11 May 2016 17 November 2016
Multiple output rectifier BLUE INDUCTIVE GMBH 28 February 2017 08 September 2017
System for converting ac electrical power to DC electrical power and methods ABB SCHWEIZ AG,LIANG, JIAQI,QI, LI 18 August 2016 23 February 2017
Method and apparatus for providing welding and auxiliary power ILLINOIS TOOL WORKS INC. 08 November 2015 23 June 2016
Power converter with controllable DC offset EPC POWER CORPORATION 22 April 2016 27 October 2016
Alternating current-to-direct current power supply output system SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD. 08 April 2016 14 September 2017
Switched-mode power supply having a reduced harmonic load on the mains THOMSON LICENSING DTV 17 March 1997 11 July 2000
See all similar patents <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10003253 Hybrid transformation 1 US10003253 Hybrid transformation 2 US10003253 Hybrid transformation 3