Great research starts with great data.

Learn More
More >
Patent Analysis of

Harringtonines salts in the crystalline state and their use for the purification of the corresponding drug substance

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US10150776

Application Number

US15/109254

Application Date

30 December 2014

Publication Date

11 December 2018

Current Assignee

ROBIN, JEAN-PIERRE,RADOSEVIC, NINA,BLANCHARD, JULIE,ROISNEL, THIERRY,BATAILLE, THIERRY

Original Assignee (Applicant)

ROBIN, JEAN-PIERRE,RADOSEVIC, NINA,BLANCHARD, JULIE,ROISNEL, THIERRY,BATAILLE, THIERRY

International Classification

C07D491/147,C07D491/14

Cooperative Classification

C07D491/14,C07D491/147

Inventor

ROBIN, JEAN-PIERRE,RADOSEVIC, NINA,BLANCHARD, JULIE,ROISNEL, THIERRY,BATAILLE, THIERRY

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US10150776 Harringtonines salts crystalline 1 US10150776 Harringtonines salts crystalline 2 US10150776 Harringtonines salts crystalline 3
See all images <>

Abstract

The present disclosure concerns harringtonines salts at the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having general formula 1,

    • comprising solvates, made by reacting a cephalotaxine ester alkaloid base having formula 2,

in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, with an acid having general formula AH in a non-aqueous crystallization solvent, wherein the said salt has a large water solubility. The disclosure is also related to a process for preparing and purifying these salts and their use as chemotherapeutic drugs.

Read more

Claims

1. A crystalline homoharringtonine salt of Formula (I)or solvate thereof,

wherein the homoharringtonine is protonated on the nitrogen and A represents an organic acid anion selected from the group consisting of fumarate, maleate, citramalate, malate, tartrate, tartronate, succinate, itaconate or citrate, obtained by separately dissolving a compound of formula (II) and an organic acid AH selected from the group consisting of fumaric acid, maleic acid, citramalic acid, malic acid, tartaric acid, tartronic acid, succinic acid, itaconic acid or citric acid, in methanol at a concentration close to saturation and at a temperature close to the boiling point of methanol, to obtain two methanolic solution, mixing both methanolic solutions under stirring, thus obtaining a mixed solution, cooling the mixed solution, evaporating methanol, and collecting the crystalline homoharringtonine salt of formula (I) as defined above after a period ranging from a few minutes up to several days.

2. The salt of claim 1 having following formula in which the malic acid is of configuration 2S having formula

3. The salt of claim 2, in which the malic acid is of configuration 2R having formula

4. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (R)-malate exhibiting the following formula:

5. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen succinate exhibiting the following formula:

6. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″S,3′″S)-tartrate exhibiting the following formula:

7. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″R,3′″R)-tartrate exhibiting the below formula:

8. The salt of claim 1, The crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen itaconate exhibiting the following formula:

9. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen fumarate exhibiting the following formula:

10. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen tartronate exhibiting the below formula:

11. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen malonate exhibiting the following formula:

12. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine dihydrogen citrate exhibiting the following formula:

13. The salt of claim 1, wherein the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine salicate exhibiting the following formula:

14. The cation (3S,4S,5R,2′R)-homoharringtoninium as described in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1, and 2.12.1, having the following formula (III)

15. A process for preparing and purifying the salt of claim 1, comprising:

contacting a natural, hemi-synthetic or synthetic homoharringtonine with acid AH as defined in claim 1, in suspension or in solution in methanol, or mixed at the solid state either at the amorphous state or at the crystalline state, recrystallizing said salt in methanol at a concentration close to saturation and at a temperature close to the boiling point of methanol, to obtain two methanolic solution, mixing both methanolic solutions under stirring, thus obtaining a mixed solution, cooling the mixed solution, evaporating methanol, and collecting the crystalline homoharringtonine salt of formula (I) as defined above after a period ranging from a few minutes up to several days.

16. The process of claim 15, wherein it comprises fractional crystallization, thereby providing an enantiomerically enriched crystalline homoharringtonine salt.

17. A pharmaceutical dosage form comprising a pharmaceutically acceptable carrier and a therapeutically effective amount the salt of claim 1, or solvate thereof.

Read more

Claim Tree

  • 1
    1. A crystalline homoharringtonine salt of Formula (I)or solvate thereof, wherein
    • the homoharringtonine is protonated on the nitrogen and A represents an organic acid anion selected from the group consisting of
    • 2. The salt of claim 1 having
      • following formula in which the malic acid is of configuration 2S having formula
    • 4. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (R)-malate exhibiting the following formula:
    • 5. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen succinate exhibiting the following formula:
    • 6. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″S,3′″S)-tartrate exhibiting the following formula:
    • 7. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″R,3′″R)-tartrate exhibiting the below formula:
    • 8. The salt of claim 1, The crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen itaconate exhibiting the following formula:
    • 9. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen fumarate exhibiting the following formula:
    • 10. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen tartronate exhibiting the below formula:
    • 11. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine hydrogen malonate exhibiting the following formula:
    • 12. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine dihydrogen citrate exhibiting the following formula:
    • 13. The salt of claim 1, wherein
      • the salt is a crystalline salt named (3S,4S,5R,2′R)-homoharringtonine salicate exhibiting the following formula:
  • 14
    14. The cation (3S,4S,5R,2′R)-homoharringtoninium as described in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1, and 2.12.1, having
    • the following formula (III)
  • 15
    15. A process for preparing and purifying the salt of claim 1, comprising:
    • contacting a natural, hemi-synthetic or synthetic homoharringtonine with acid AH as defined in claim 1, in suspension or in solution in methanol, or mixed at the solid state either at the amorphous state or at the crystalline state, recrystallizing said salt in methanol at a concentration close to saturation and at a temperature close to the boiling point of methanol, to obtain two methanolic solution, mixing both methanolic solutions under stirring, thus obtaining a mixed solution, cooling the mixed solution, evaporating methanol, and collecting the crystalline homoharringtonine salt of formula (I) as defined above after a period ranging from a few minutes up to several days.
    • 16. The process of claim 15, wherein
      • it comprises
  • 17
    17. A pharmaceutical dosage form comprising
    • a pharmaceutically acceptable carrier and a therapeutically effective amount the salt of claim 1, or solvate thereof.
See all independent claims <>

Description

The present invention concerns crystalline salts of harringtonines, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation allowing their use as drug substance for blending alone or in combination in pharmaceutical composition useful for chemotherapy of cancer, parasit and viral diseases and/or as immunosuppressive agents, particularily in using oral or parentheral modes of administration.

Among harringtonines, omacetaxine D.C.I. (=OMA, formerly homoharringtonine=HHT) is a natural ester of cephalotaxine (see scheme 1 and table 1), an alkaloid of Cephalotaxus harringtonia, a rare and endangered Asian conifer belonging to Cephalotaxaceae family. OMA/HHT content in renewable parts of Cephalotaxus is about a few dozen of mg only per kilo of dry plant material. This characteristic, in despite of considerable efforts performed by the U.S. National Cancer Institute, hampered clinical development of omacetaxine for more than thirty-years. In 1998, the discovering of a new hemi-synthetic process by one of us (JPR), allowed industrial production of homoharringtonine at the kilo scale [ref TL] and divided by 70 the need of rare plant material [ref Nicolini].

Important Note:

It should be pointed out that chemical structure of hemi-synthetic omacetaxine is strictly identical to the natural one version: omacetaxine is not a semi-synthetic derivative as indicated in some article published in literature (see scheme 1 and table1) [ref]. All denominations of omacetaxine (OMA) or homoharringtonine (HHT) included in this document are strictly equivalent. The sentence “omacetaxine is a semi-synthetic derivative of cephalotaxine” encountered in literature, is totally devoid of scientific significance: the semi-synthetic appellation suggests that a moiety of the molecule (cephalotaxine) would natural and that the other moiety (the side chain) would be unnatural (man designed) while the latter is strictly natural. When only a portion of a molecule was produced by synthesis, the process name is hemi-synthesis and the molecule is sometimes also called hemi-synthetic.

Short History of Recent Development of Homoharringtonine.

Initially, all above esters of cephalotaxine were discovered by U.S. teams [ref powel:] and a large development program was performed by the United States National Cancer Institute [ref suff]. In October 2012, the United States Food and Drug Administration (FDA) granted accelerated approval for omacetaxine mepesuccinate for the treatment of adult patients with chronic or accelerated phase chronic myeloid leukemia (CML) who failed to responde to two or more tyrosine kinase inhibitors (TKIs) [ref fda]. Since this approval, at least a hundred articles or reviews related to OMA/HHT were published in literature [ref pub med]. Definitive approval of OMA/HHT was granted in 2014. This occurred after a very long and tumultuous period of clinical development [kanta], including early clinical development of HHT and, to a lesser extent, its congeners harringtonine (HA) and deoxyharringtonine (DHA) in various institution in the U.S. and in China. Finally the successive involvement of seven pharmaceutical companies (Vivorex/American Bioscience; Oncopharm; Stragen; Chemegenex; Cephalon; TEVA) dispatched in 5 countries occurred before approval of omacetaxine! More than 50 clinical trials in USA, China and France involving more than 2000 patients.

Definition (See Scheme 1 and Table 1)

Homoharringtonine/Omacetaxine Mepesuccinate/Synribo/Myelostat

The INN (International Non-proprietary Name) “omacetaxine mepesuccinate” (OMA) is a name reserved for homoharringtonine HHT drug substance dedicated for pharmaceutical and medicinal use regardless its natural, hemi-synthetic or synthetic origin [formerly named homoharringtonine]. Synribo (TEVA) and Myelostat (Oncopharm corporation) are trademark (Ref the Oncologist).

Cephalotaxanes Including Numbering

Cephalotaxanes are particular alkaloids to date exclusively extracted from the

Cephalotaxaceae family which exhibit the structural formula 1. Several substituants may be encountered on this core structure: hydroxyl, ether, acyloxy etc. The eventual presence of some additional double bound or intramolecular bridge achieve to definite cephalotaxanes. Cephalotaxines 2 are cephalotaxanes without acyloxy side-chain.

Cephalotaxine 2a and drupacine 2b are example of cephalotaxines. Harringtonines 5 are particular cephalotaxanes formed by attachment of a branched α-hydroxyacyloxy side-chain at the 3-position of various cephalotaxines moieties. Cephalotaxines 2 and harringtonines 5, are examples of cephalotaxanes. Several dozen of cephalotaxanes have been isolated from various Cephalotaxus species. 4 is the generic formula of cephalotaxine esters [ref Takano].

Harringtonines 5 (i.e. harringtonine=HA and homoharringtonine=HHT) are particular cephalotaxine esters. Cephalotaxine and its natural ester are gathered under the generic term of cephalotaxane.

Harringtoids are semi-synthetic derivatives of harrintonines.

Harringtonic acids are side-chain of harringtonines


TABLE 1
NATURAL AND SEMI-SYNTHETIC ESTERS OF CEPHALOTAXINE
#
Trivial name
R2
R3
R4
Note #
Activity*
5a
harringtonine
(CH3)2COH—(CH2)2
Me
H
(1)
anticancer
5b
homoharringtonine
(CH3)2COH—(CH2)3
Me
H
(2)
anticancer
5c
norharringtonine
(CH3)2COH—CH2
Me
H
(3)
none
5d
deoxyharringtonine
(CH3)2CH—(CH2)2
Me
H
(4)
anticancer
5e
bishomoharringtonine
(CH3)2COH—(CH2)4
Me
H
(5)
none
5f
isoharringtonine
(CH3)2CH(CH2)2
Me
OH
(6)
none
5g
neoharringtonine
C6H5—CH2
Me
H
(7)
cytotoxic
5h
harringtonines
R2
Me
R4
(8)
N/A
5i
harringtoids
R2
R3
R4
(9)
cytotoxic
*In cancer area, for definition of term see [Suffness et al in Journal of Natural Products 1982 p 1 Current Status of the NCI Plant and Animal Product Program] CYTOTOXICITY is toxicity to tumor cells in culture; ANTITUMOR is in vivo activity in experimental systems; ANTINEOPLASTIC or ANTICANCER iare the reserved terms for reportied clinical trials data.
(1) The first cephatotaxine ester isolated from cephalotaxus harringtonia
(2) “Homo” means one more carbone than harringtonine; Named omacetaxine (D.C.I.) as active pharmaceutical ingredient
(3) “nor” means one more less carbone

Two harringtonines are very promising drugs in the treatment of certain leukemia such as Chronic Myelogenous Leukemia (CML). Both homoharringtonine and harringtonine were used in human chemotherapy of leukemia for 30 years.

We described here new highly purified cristallin forms of certain harrintonines [ref] but, surprisingly, never crystalline salts of harringtonines have been isolated and described in literature

However, in spite of the progress recorded in production, purification and therapeutic use of homoharringtonine, several disadvantages persist.

i) The cost of treatment for omacetaxine (Synribo) is prohibitive: $28,000 for induction, $14,000 for monthly treatments), this give about 180.000 $ per year, per patient [Kantarjian et al. Journal of Clinical Oncology, 2013, p3600; Hagop Kantarjian, personal communication]

ii) The use of the parenteral route of administration even retards the development of this drug

iii) Preparation of formulations for parenteral use is complicated by the use of lyophilization

iv) Formation of non crystalline salts of harrintonines give not as accurately definited compound as crystalline salts

v) There is some local intolerance to this product when administered subcutaneously

vi) On the other hand, although it has been known for almost 40 years, there is still a slight doubt regarding the absolute configuration of this series of natural product

Recent scientific discovering regarding mechanism of activity of harringtonines

The team Steitz [Journal of Molecular Biology (2009), 389(1), 146-156] recently demonstrated that homoharringtonine when in place in its active site was protonated in a neutral media, implying that alkaloid nitrogen protonation is imperative condition for the manifestation of the activity of this ligand.

In addition, the team of Takano et al [J. Org. Chem. 8251 (1997)] demonstrated experimentally that when the nitrogen lone pair of homoharringtonine was occupied by an oxygen atom, the cytotoxic activity was divided by a factor of at least 50. The authors conclude that “the nitrogen lone pair on the cephalotaxine skeleton appears to be essential for its activity”.

The above mentioned team of Steitz showed that the absolute configuration of homoharringtonine deposited in the Cambridge Structural Database seems to be the opposite of that commonly adopted in the literature.

The present invention relates to overcome the problems mentioned above. It also demonstrated that the absolute configuration in the deposited homoharringtonine Cambridge Structural Database seems to be the opposite of that commonly retained in the literature.

The eight example of single crystal X-ray diffraction of homoharringtonine salt exhibited in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1 and 2.12.1 clearly indicates that the alkaloid moiety was efficiently protonated by the processes described in the present invention. Moreover, the shortest distance between said proton carried by the nitrogen is close to two angstroms, showing the reality of the formation of a salt and not a mere co-crystal.

The present invention relates to overcome the problems mentioned above, namely:

    • raise doubt on the absolute configuration of harringtonines
    • provide a method of administration of harringtonines protonated on their nitrogen atom

As detailed above, the fact that the real active form of harringtonines would be their nitrogen-protonated version was recently supported by the work of Seitz et al. and, indirectly by the work of Takano et al.

The present invention concerns novel water soluble crystalline salts of homoharringtonine and their use as new chemical entities for the formulation of new cancer chemotherapeutic agents, or immunosuppressive or antiparasitic and to implement new processes for purification including enantiomeric and determine the absolute configuration of the series.

The present invention describes the preparation of crystalline salts of harringtonines as nitrogen-protonated form, stable and soluble in water and their use for the manufacture of pharmaceutical composition useful in the treatment of cancers, leukemias, immune disease and as reversal agents.

The present invention describes a unambiguously proved method of protonation of harringtonine nitrogen.

The present invention provides salts of harringtonines in the solid state, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation from harringtonines and commercial organic acid allowing their use as drug substance for blending alone or in combination in pharmaceutical composition particularly useful for treatment of cancer in using oral mode of administration.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1.1 is infra-red (IR) spectrum of Homoharringtonine (base alkaloid). FIG. 1.1 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.1 (ii) is IR(ATR) spectrum in the amorphous state.

FIG. 1.2 is infra-red (IR) spectrum of Homoharringtonine hydrogen (S)-malate in the solid state. FIG. 1.2 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.2 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.3 is infra-red (IR) spectrum of Homoharringtonine hydrogen (R)-malate in the solid state. FIG. 1.3 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.3 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.4 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2S,3S)-tartrate in the solid state. FIG. 1.4 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.4 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.5 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2R,3R)-tartrate in the solid state. FIG. 1.5 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.5 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.6 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″S)-citramalate in the solid state. FIG. 1.6 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.6 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.7 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″R)-citramalate in the solid state. FIG. 1.7 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.7 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.8 is infra-red (IR) spectrum of Homoharringtonine succinate. FIG. 1.8 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.8 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.9 is infra-red (IR) spectrum of Homoharringtonine hydrogen itaconate in the solid state. FIG. 1.9 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.9 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.10 is infra-red (IR) spectrum of salt named homoharringtonine hydrogen fumarate in the solid state. FIG. 1.10 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.10 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.11 is infra-red (IR) spectrum of Homoharringtonine hydrogen tartronate in the solid state. FIG. 1.11 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.11 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.12 is infra-red (IR) spectrum of Homoharringtonine malonate in the solid state. FIG. 1.12 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.12 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.13 is infra-red (IR) spectrum of Homoharringtonine dihydrogen citrate in the solid state. FIG. 1.13 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.13 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.14 is infra-red (IR) spectrum of Homoharringtonine salicyclate in the solid state. FIG. 1.14 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.14 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 2.2.1 is single crystal x-ray diffraction of homoharringtonine base, form A (ORTEP-3 software).

FIG. 2.2.2 is single crystal x-ray diffraction of homoharringtonine base, form B (ORTEP-3 software).

FIG. 2.2.3 is single crystal x-ray diffraction of homoharringtonine base, form B with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software). FIG. 2.3.1 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate (ORTEP-3 software).

FIG. 2.3.2 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.3.3 is x-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S)-(−)-malate.

FIG. 2.4.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate (created by ORTEP-3 software).

FIG. 2.4.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.4.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(+)-malate.

FIG. 2.5.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(−)-tartarate (created by ORTEP-3 software).

FIG. 2.5.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.5.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S,3S)-(−)-tartarate.

FIG. 2.6.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate (created by ORTEP-3 software).

FIG. 2.6.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.6.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R,3R)-(+)-tartarate.

FIG. 2.7.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2′″S)-citramalate.

FIG. 2.8.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate (created by ORTEP-3 software).

FIG. 2.8.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.8.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(−)-citramalate.

FIG. 2.9.1 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate (created by ORTEP-3 software).

FIG. 2.9.2 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.10.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen fumarate.

FIG. 2.11.1 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate (created by ORTEP-3 software).

FIG. 2.11.2 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.11.3 is X-ray powder diffraction (XRPD) of homoharringtonine dihydrogen citrate.

FIG. 2.12.1 is single crystal X-ray diffraction of homoharringtonine salicyclate (created by ORTEP-3 software).

FIG. 2.12.2 is single crystal X-ray diffraction of homoharringtonine salicyclate (PLUTO drawing).

FIG. 2.12.3 is single crystal X-ray diffraction of homoharringtonine salicyclate (stick drawing).

FIG. 2.12.4 is single crystal X-ray diffraction of homoharringtonine salicyclate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 3.1 is DSC pattern of homoharringtonine base.

FIG. 3.2 is DSC pattern of homoharringtonine hydrogen (2S)-malate.

FIG. 3.3 is DSC pattern of homoharringtonine hydrogen (2R)-malate.

FIG. 3.4 is DSC pattern of homoharringtonine hydrogen (2S,3S)-tartrate.

FIG. 3.5 is DSC pattern of homoharringtonine hydrogen (2R,3R)-tartrate.

FIG. 3.6 is DSC pattern of homoharringtonine hydrogen (2S)-citramalate.

FIG. 3.7 is DSC pattern of homoharringtonine hydrogen (2R)-citramalate.

FIG. 3.8 is DSC pattern of homoharringtonine hydrogen succinate.

FIG. 3.9 is DSC pattern of homoharringtonine hydrogen itaconate.

FIG. 3.10 is DSC pattern of homoharringtonine hydrogen fumarate.

FIG. 3.11 is DSC pattern of homoharringtonine hydrogen tartronate.

FIG. 3.12 is DSC pattern of homoharringtonine hydrogen malonate.

FIG. 3.13 is DSC pattern of homoharringtonine dihydrogen citrate.

FIG. 3.14 is DSC pattern of homoharringtonine salicyclate.

DETAILED DESCRIPTION

A preferred embodiment of the invention is a crystalline homoharringtonine hydrogen 2S-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.2, the same single crystal X-ray diffractogram as set out in FIGS. 2.3.1 and 2.3.2, the same X-ray powder pattern as set out in FIG. 2.3.3 and the same DSC curve as set out in FIG. 3.2.

A further preferred embodiment of the invention provides a crystalline homoharringtonine hydrogen 2R-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.3, the same single crystal X-ray diffractogram as set out in FIGS. 2.4.1 and 2.4.2, the same X-ray powder pattern as set out in FIG. 2.4.3 and the same DSC curve as set out in FIG. 3.3.

A further preferred aspect of the invention is a crystalline homoharringtonine hydrogen (2S,3S)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.4, the same single crystal X-ray diffractogram as set out in FIGS. 2.5.1 and 2.5.2, the same X-ray powder pattern as set out in FIG. 2.5.3 and the same DSC curve as set out in FIG. 3.4.

Yet, a further embodiment of the invention is a crystalline homoharringtonine hydrogen (2R,3R)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.5, the same single crystal X-ray diffractogram as set out in FIGS. 2.6.1 and 2.6.2, the same X-ray powder pattern as set out in FIG. 2.6.3 and the same DSC curve as set out in FIG. 3.5.

Yet, another embodiment of the invention provides a crystalline homoharringtonine hydrogen (2S)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.6, the same X-ray powder pattern as set out in FIG. 2.7.1 and the same DSC curve as set out in FIG. 3.6.

Yet, a preferred aspect of this invention is a crystalline homoharringtonine hydrogen (2R)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.7, the same single crystal X-ray diffractogram as set out in FIGS. 2.8.1 and 2.8.2, the same X-ray powder pattern as set out in FIG. 2.8.3 and the same DSC curve as set out in FIG. 3.7.

Yet, another preferred aspect of this invention provides a crystalline homoharringtonine hydrogen succinate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.8, and the same DSC curve as set out in FIG. 3.8.

Yet, a further preferred aspect of this invention is a crystalline homoharringtonine hydrogen itaconate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.9, the same single crystal X-ray diffractogram as set out in FIGS. 2.9.1 and 2.9.2 and the same DSC curve as set out in FIG. 3.9.

Yet, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen fumarate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.10, the same X-ray powder pattern as set out in FIG. 2.10.1 and the same DSC curve as set out in FIG. 3.10

Yet, an another aspect of the invention provides a crystalline homoharringtonine hydrogen tartronate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.11 and the same DSC curve as set out in FIG. 3.11.

In addition, another embodiment provides a crystalline homoharringtonine hydrogen malonate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.12 and the same DSC curve as set out in FIG. 3.12.

Moreover, a preferred embodiment of this invention provides a crystalline homoharringtonine dihydrogen citrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.13, the same single crystal X-ray diffractogram as set out in FIGS. 2.11.1 and 2.11.2, the same X-ray powder pattern as set out in FIG. 2.11.3 and the same DSC curve as set out in FIG. 3.13

Also, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen salicylate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.14, the same single crystal X-ray diffractogram as set out in FIGS. 2.12.1, 2.12.2, 2.12.3 and 2.12.4 and the same DSC curve as set out in FIG. 3.14.

Yet, a preferred aspect of this invention provides a pharmaceutical composition comprising an effective amount of one of the salts of this invention, together with one or more pharmaceutical acceptable inactive components such as carriers, excipients, adjuvants or diluents.

Yet, a preferred aspect of this invention provides a pharmaceutical dosage form dedicated to an oral mode of administration selected among, for example, capsules, dragees, emulsions, granules, pills, powders, solutions, suspensions, tablets, microemulsions, elixirs, syrups, tea or powders for reconstitution

Yet, a another aspect of this invention provides a pharmaceutical dosage form dedicated to a subcutaneous mode of administration in non-acidic condition allowing a good locale tolerance

Another aspect of the invention is the use of at least the solid form of one salt described in the invention for preparing the above pharmaceutical composition as (i) chemotherapeutic agent, (ii) enhancer of other chemotherapeutic agents (iii) after failure of other agents (iv) for inhibiting tumors growth in animal, (v) for inhibiting mammalian parasites, (vi) as immunosuppressive agent, or (vii) as reversal agent.

A preferred embodiment of the invention describes a method for treating mammalian tumors which comprises oral administering to a mammal an antitumor effective amount of the solid form of one salt described in this invention.

A further preferred embodiment of the invention describes a method for treating mammalian tumors which comprises implantable pharmaceutical preparation administering to a mammal an antitumor effective amount of the solid form of at least one salt described in this invention.

Yet, invention is also concerned with the use of solid form as defined above, for the preparation of pharmaceutical compositions for the treatment of cancer particularly, ovarian serous high-grade carcinoma including those resistant to existing therapy, breast cancer including triple negative breast carcinoma and eventually their metastasis, pancreatic cancer including ductal adenocarcinoma.

Finally, the invention is also concerned with the use of solid form as defined above, for the preparation of pharmaceutical compositions for the treatment of leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis.

EXAMPLE 1: GENERAL PROCEDURE FOR EXPERIMENTAL METHODS

1.1 General Procedures for Salts Preparation

Cation and anion components are dissolved separately in a solvent at a concentration close of saturation and at a temperature close of boiling then both solutions are mixed under stirring then slowly cooled and evaporated. After a period ranging from a few minutes up to several days, crystal salt is collected. A sample of the batch of crystals is kept suspended in its mother liquors for the subsequent X-ray diffraction analysis. The remainder of the batch was dried under vacuum for further solid characterisation, comparative stability studies and drug formulation.

1.2 General Procedures for Solid State Characterization

Single Crystal X-Ray Diffractions Material and Methods

KappaCCD, Nonius diffractometer, Mo-Kα radiation (λ=0.71073 Å). The structure was solved by direct methods using the SHELXS-97 program [Sheldrick G. M., Acta Cryst. A64 (2008), 112-122], and then refined with full-matrix least-square methods based on F2 (SHELXL-2013) [Sheldrick G. M., (2013)] with the aid of the WINGX [L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854] program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen and oxygen linked hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions.

Collected information: atomic positions; unit cell composition; crystal packing anisotropic displacement parameters; bond lengths, dihedral and torsion angles, hydrogen bounding.

Original files with all parameters are includes on a CD and may be visualized and handled in using ORTEP-3 software (ORTEP=Oak Ridge Thermal-Ellipsoid Plot Program) available free of charge on the Internet:

http://www.chem.gla.ac.uk/˜louis/software/ortep3/

X-Ray Diffraction Powder

Diagrams were measured on a Bruker AXS D8 Advance diffractometer, Bragg-Brentano geometry (θ-2 θ), CuK α=1.5406 Å, 600 ms/pixel, rotation: 0.25/sec. For each chart, the calculated pattern from the single crystal structure, when available, is upped mentioned.

Differential Scanning Calorimetry (DSC)

The DSC analysis was performed using a Perkin Elmer DSC 4000 apparatus. The scan rate was 5° C./min and the scanning range of temperature 40 to 230° C. The accurately weighed quantity was ranged from 1 to 3 mg. All operations were performed under nitrogen atmosphere. The measured values were the Onset, the Peak and the value of the free enthalpy variation. The eventual product decomposition and the vaporization of solvent crystallization (methanol and/or water) were recorded. The value of the change in free energy, was given only as a guideline to assess the endothermicity or exotermicity of the transition.

Melting Point Checking

Melting points were measured manually for visual checking of the one determined with DSC. A Bücchi B-545 melting point apparatus was used and mp are uncorrected.

Infrared Spectra

All vibrational spectra were recorded on a Perkin Elmer IR FT Spectrum 2 apparatus equipped with diamond ATR accessory that is to say using Attenuated Total Reflection technique. The crystalline solids were crushed directly by in situ compression on the diamond window and the amorphous state has been demonstrated by dissolving the product in deuterated methanol then generating the film by in situ evaporation on the diamond window.

1.3 General Procedures for Liquid State and Solution Characterizations

Nuclear Magnetic Resonance

NMR spectra were recorded automatically on a Bruker Avance III spectrometer NanoBay-400 MHz (9.4 Tesla magnet) with a BBFO+ probe and sampler 120 positions, allows for automatic mode NMR experiments one and two dimensions mainly for nuclei: 1H, 2H, 11B, 13C, 15N, 19F, 27Al, 31P, 119Sn or on Bruker Avance III-600 MHz spectrometer.

Dissolving Salts for 13C NMR:

30 mg of compound were dissolved in 600 μL (5% m/V) of methanol D4 or deuterium oxyde (or both if specified)

Water Suppression:

The irradiation technique known as ‘watergate’ (Selective pulse flanked by gradient pulses) was used for proton NMR in the presence of D2O and/or MOD4 as solvents.

High Performance Liquid Chromatography

Routine experiments were performed on a Waters HPLC-MS-DAD coupled system (3100 pump, DAD 996 detector, 3100 mass detector).

Solubility Determination

Solubility in water at 25° C. was measured semi-quantitatively at a threshold of 5 g per 100 mL. All the homoharringtonine salts described in the below examples, unless otherwise stated, are soluble at this threshold. Homoharringtonine base itself is soluble at a threshold lower than 0.1 g per mL

EXAMPLE 2: ANALYSES OF HOMOHARRINGTONINE BASE FOR COMPARISON WITH ITS SALTS

2.1 Analysis of Homoharringtonine Base Alkaloid

Bath #: 51H0092 from SIGMA

NMR spectra were performed in deuterated methanol for comparison with salt in the same solvent.

By methanol recrystallisation of a commercial alkaloid from natural source, it results fine white prisms (mp 145-146°, by DSC, see FIG. 3.1) used for all experiences.

1H NMR (400 MHz, Benzene-d6) δ 6.54 (s, 1H), 6.46 (s, 1H), 6.21-6.12 (m, 1H), 5.47 (d, J=1.4 Hz, 1H), 5.33 (d, J=1.4 Hz, 1H), 4.67 (s, 1H), 3.43 (d, J=9.8 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H), 2.83 (td, J=8.5, 4.5 Hz, 1H), 2.75 (dd, J=11.5, 4.5 Hz, 1H), 2.55 (dd, J=10.8, 7.5 Hz, 1H), 2.41 (dd, J=16.2, 6.9 Hz, 2H), 2.23-2.11 (m, 2H), 1.78 (m, 1H), 1.67-1.56 (m, 2H), 1.48 (m, 5H), 1.34-1.19 (m, 2H), 1.04 (d, J=6.7 Hz, 6H).

1H NMR (300 MHz, Chloroform-d) δ 6.62 (s, 1H), 6.54 (s, 1H), 6.00 (d, J=9.8 Hz, 1H), 5.87 (s, 2H), 5.05 (s, 1H), 3.78 (d, J=9.8 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H), 3.52 (s, 1H), 3.20-3.04 (m, 2H), 3.01-2.88 (m, 1H), 2.60 (t, J=7.2 Hz, 1H), 2.38 (dd, J=13.7, 6.3 Hz, 1H), 2.26 (d, J=16.5 Hz, 1H), 2.10-1.97 (m, 1H), 1.91 (d, J=16.5 Hz, 1H), 1.75 (s, OH), 1.39 (dd, J=13.5, 6.4 Hz, 5H), 1.19 (s, 7H).

1H NMR (400 MHz, Methanol-d4)* δ 6.7 (s, 1H), 6.59 (s, 1H), 5.98 (dd, J=9.8, 0.8 Hz, 1H), 5.89 (d, J=1.2 Hz, 1H), 5.85 (d, J=1.2 Hz, 1H), 5.22 (d, J=0.8 Hz, 1H), 3.89 (d, J=9.8 Hz, 1H), 3.70 (s, 3H), 3.55 (s, 3H), 3.20 (ddd, J=14.1, 12.4, 7.9 Hz, 1H), 2.96 (m, 1H), 2.88 (m, 1H), 2.64 (dd, J=11.4, 7.6 Hz, 1H), 2.44 (dd, J=14.3, 6.8 Hz, 1H), 2.17 (d, J=16.1 Hz, 1H), 2.03 (m, 1H), 1.95 (m, 1H), 1.90 (d, J=16.1 Hz, 1H), 1.49-1.30 (m, 5H), 1.25 (dd, J=9.8, 5.8 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD) δ 174.68, 171.76, 159.97, 148.21, 147.32, 134.49, 129.88, 114.02, 110.86, 102.10, 100.74, 76.03, 75.52, 72.14, 71.35, 58.04, 56.48, 54.60, 52.00, 49.64, 44.89, 44.15, 43.86, 40.87, 32.08, 29.27, 29.01, 20.82, 19.19.

IR (KBr, solid), cm−1 3551.9, 3412.3, 3000.4, 2976.1, 2966.0, 2958.6, 2911.4, 2876.0, 2814.4, 2740.8, 1743.0, 1653.5, 1624.7, 1505.3, 1488.1, 1454.8, 1436.1, 1411.2, 1392.8, 1377.7, 1367.2, 1346.3, 1306.4, 1274.3, 1261.5, 1230.0, 1190.8, 1162.1, 1135.3, 1119.9, 1082.0, 1027.9, 1000.5, 932.1, 900.6, 879.3, 854.2, 827.3, 804.9, 795.2, 772.4, 762.9, 738.3, 705.7, 674.0, 661.4, 610.8, 556.7, 540.9, 522.1, 512.8, 503.3. See FIG. 1.1

A) Single Crystal X Ray Diffraction of Homoharringtonine Base (Form A)

See Corresponding FIG. 2.2.1

From a suspension in its mother liquor, a suitable single crystal of size 0.5×0.4×0.4 mm was finally selected and implemented on the diffractometer.


Structural data:
Empirical formula
C29H39N1O9
Formula weight
 545.61
Temperature
293(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 11.9512(2) Å, α = 90°
b = 15.2211(2) Å, β = 90°
c = 15.9670(2) Å, γ = 90°
Volume
2904.56(7) Å3
Z, Calculated density
4, 1.248 (g · cm−1)
Absorption coefficient
0.092 mm−1
F(000)
1168
Crystal size
0.5 × 0.4 × 0.4 mm
Crystal color
colourless
Theta range for data collection
2.881 to 29.046°
h_min, h_max
−16, 16
k_min, k_max
−20, 20
l_min, l_max
−21, 21
Reflections collected/unique
35627/7642 [aR(int) = 0.049]
Reflections [I > 2σ]
5925
Completeness to theta_max
  0.99
Absorption correction type
none
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
7642/0/352
bGoodness-of-fit
  1.034
Final R indices [I > 2σ]
cR1 = 0.0495, dwR2 = 0.1256
R indices (all data)
cR1 = 0.0719, dwR2 = 0.1411
Largest diff. peak and hole
0.284 and −0.203 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.2.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.9387(2)
0.25439(15)
0.89639(14)
1
0.0374(5)
H1
1.0075
0.2226
0.8823
1
0.045
C2
0.9724(2)
0.34995(16)
0.90497(14)
1
0.0390(5)
C3
1.0805(2)
0.37308(17)
0.87926(17)
1
0.0442(5)
H3
1.1276
0.3319
0.8546
1
0.053
C4
1.1150(2)
0.45761(19)
0.89130(17)
1
0.0494(6)
C5
1.2096(4)
0.5829(2)
0.8960(3)
1
0.0862(12)
H5A
1.2163
0.6192
0.8463
1
0.103
H5B
1.2695
0.5986
0.9342
1
0.103
C6
1.0469(3)
0.51945(17)
0.92762(18)
1
0.0528(6)
C7
0.9399(2)
0.49967(18)
0.95274(17)
1
0.0498(6)
H7
0.8939
0.5421
0.9765
1
0.06
C8
0.9026(2)
0.41337(17)
0.94127(15)
1
0.0434(5)
C9
0.7884(2)
0.38828(18)
0.97226(17)
1
0.0493(6)
H9A
0.7497
0.3553
0.9291
1
0.059
H9B
0.7455
0.4411
0.9836
1
0.059
C10
0.7951(3)
0.3328(2)
1.05191(18)
1
0.0569(7)
H10A
0.8046
0.3714
1.0997
1
0.068
H10B
0.7251
0.3014
1.0592
1
0.068
C11
0.8990(3)
0.2199(3)
1.12687(17)
1
0.0648(8)
H11A
0.8277
0.1965
1.1455
1
0.078
H11B
0.9302
0.256
1.1711
1
0.078
C12
0.9767(5)
0.1482(3)
1.1039(2)
1
0.1012(16)
H12A
1.0519
0.162
1.1227
1
0.121
H12B
0.9536
0.0937
1.1303
1
0.121
C13
0.9745(3)
0.1391(2)
1.0129(2)
1
0.0677(9)
H13A
0.949
0.0808
0.9975
1
0.081
H13B
1.0488
0.148
0.99
1
0.081
C14
0.8927(2)
0.20973(17)
0.97856(14)
1
0.0426(5)
C15
0.7844(2)
0.16871(17)
0.95088(16)
1
0.0457(5)
H15
0.7362
0.1387
0.9865
1
0.055
C16
0.7655(2)
0.18031(16)
0.86960(15)
1
0.0407(5)
C17
0.8541(2)
0.23162(15)
0.82622(14)
1
0.0374(5)
H17
0.8905
0.1948
0.7839
1
0.045
C18
0.8201(2)
0.31714(16)
0.70344(14)
1
0.0415(5)
C19
0.7614(2)
0.39953(17)
0.67082(15)
1
0.0470(6)
C20
0.7996(3)
0.48109(18)
0.71967(18)
1
0.0574(7)
H20A
0.7501
0.5295
0.7059
1
0.069
H20B
0.7916
0.4693
0.7791
1
0.069
C21
0.9168(4)
0.5087(2)
0.7031(2)
1
0.0712(10)
C22
1.1000(4)
0.4595(4)
0.6716(3)
1
0.1074(16)
H22A
1.1041
0.4831
0.6159
1
0.161
H22B
1.1425
0.4061
0.6745
1
0.161
H22C
1.1301
0.5014
0.7106
1
0.161
C23
0.6346(2)
0.38782(19)
0.67748(17)
1
0.0525(6)
H23A
0.6135
0.3894
0.7361
1
0.063
H23B
0.5983
0.4369
0.6499
1
0.063
C24
0.5914(3)
0.3023(2)
0.6389(2)
1
0.0590(7)
H24A
0.6233
0.2952
0.5834
1
0.071
H24B
0.6159
0.2531
0.6729
1
0.071
C25
0.4642(3)
0.3012(2)
0.6326(2)
1
0.0665(8)
H25A
0.4338
0.3092
0.6884
1
0.08
H25B
0.4411
0.3513
0.5994
1
0.08
C26
0.4115(3)
0.2193(3)
0.5950(2)
1
0.0754(10)
C27
0.2855(4)
0.2319(4)
0.5904(4)
1
0.1200(19)
H27A
0.2691
0.2858
0.5617
1
0.18
H27B
0.2553
0.2343
0.6461
1
0.18

Single Crystal X Ray Diffraction of Homoharringtonine Base (Form B)

See Corresponding FIGS. 2.2.2 and 2.2.3

From a suspension in its mother liquor, a suitable single crystal of size 0.43×0.29×0.18 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C31H49NO12
Extended formula
C29H39NO9, 2(CH4O), H2O
Formula weight
 627.71
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 11.7738(10) Å, α = 90°
b = 14.3907(13) Å, β = 90°
c = 19.1368(15) Å, γ = 90°
Volume
3242.4(5) Å3
Z, Calculated density
4, 1.286 (g · cm−1)
Absorption coefficient
0.098 mm−1
F(000)
1352
Crystal size
0.43 × 0.29 × 0.18 mm
Crystal color
colourless
Theta range for data collection
3.02 to 27.46°
h_min, h_max
−15, 13
k_min, k_max
−18, 18
l_min, l_max
−24, 19
Reflections collected/unique
16236/4103 [aR(int) = 0.0334]
Reflections [I > 2σ]
3764
Completeness to theta_max
  0.99
Absorption correction type
multi-scan
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
4103/2/421
bGoodness-of-fit
  1.031
Final R indices [I > 2σ]
cR1 = 0.0346, dwR2 = 0.0871
R indices (all data)
cR1 = 0.039, dwR2 = 0.09
Largest diff. peak and hole
0.259 and −0.2 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIGS. 2.2.2 and 2.2.3 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
  0.14461(16)
0.92123(13)
  0.19855(10)
1
0.0185(4)
H1
  0.1645
0.9474
  0.2424
1
0.022
C2
  0.13507(16)
0.96935(13)
  0.14015(10)
1
0.0182(4)
C3
  0.10057(15)
0.91236(13)
  0.07788(10)
1
0.0162(4)
H3
  0.0245
0.9326
  0.0604
1
0.019
C4
  0.09461(15)
0.81122(13)
  0.10658(10)
1
0.0156(4)
H4
  0.0135
0.7915
  0.1024
1
0.019
C5
  0.11993(15)
0.81891(13)
  0.18697(10)
1
0.0173(4)
C6
  0.01795(18)
0.78404(16)
  0.22996(10)
1
0.0236(4)
H6A
−0.0435
0.831
  0.2309
1
0.028
H6B
−0.0124
0.7254
  0.2103
1
0.028
C7
  0.06647(19)
0.76830(18)
  0.30351(12)
1
0.0324(5)
H7A
  0.0543
0.8236
  0.3334
1
0.039
H7B
  0.0307
0.7137
  0.326
1
0.039
C8
  0.19354(19)
0.75150(15)
  0.29115(10)
1
0.0250(4)
H8A
  0.2394
0.8
  0.3146
1
0.03
H8B
  0.2164
0.69
  0.3095
1
0.03
N9
  0.21006(14)
0.75555(11)
  0.21387(8)
1
0.0190(3)
C10
  0.32858(17)
0.78051(14)
  0.19706(11)
1
0.0214(4)
H10A
  0.3792
0.729
  0.2115
1
0.026
H10B
  0.3502
0.8363
  0.2243
1
0.026
C11
  0.34668(16)
0.80017(13)
  0.11940(10)
1
0.0185(4)
H11A
  0.3221
0.8645
  0.1092
1
0.022
H11B
  0.4288
0.7958
  0.1088
1
0.022
C12
  0.28274(15)
0.73420(12)
  0.07195(10)
1
0.0166(4)
C13
  0.16369(16)
0.74035(12)
  0.06606(9)
1
0.0158(4)
C14
  0.10458(16)
0.68001(13)
  0.02102(10)
1
0.0185(4)
H14
  0.0244
0.6838
  0.0162
1
0.022
C15
  0.16632(17)
0.61550(13)
−0.01569(11)
1
0.0214(4)
C16
  0.28285(17)
0.60909(13)
−0.00929(11)
1
0.0215(4)
C17
  0.34324(16)
0.66697(13)
  0.03421(10)
1
0.0196(4)
H17
  0.4234
0.6616
  0.0385
1
0.023
C18
  0.2238(2)
0.49213(19)
−0.07619(17)
1
0.0473(7)
H18A
  0.2304
0.4778
−0.1266
1
0.057
H18B
  0.2144
0.433
−0.0504
1
0.057
C19
  0.19032(19)
1.11428(14)
  0.18498(12)
1
0.0283(5)
H19A
  0.2613
1.0871
  0.2022
1
0.042
H19B
  0.1334
1.1137
  0.2224
1
0.042
H19C
  0.2041
1.1785
  0.1701
1
0.042
C21
  0.15776(16)
0.96435(12)
−0.03634(9)
1
0.0155(3)
C22
  0.25991(16)
0.96278(12)
−0.08591(10)
1
0.0169(4)
C23
  0.29059(16)
0.86127(13)
−0.10429(10)
1
0.0188(4)
H23A
  0.3594
0.8612
−0.134
1
0.023
H23B
  0.3091
0.8276
−0.0607
1
0.023
C24
  0.19701(16)
0.80987(13)
−0.14192(10)
1
0.0187(4)
C25
  0.1561(2)
0.68927(17)
−0.22153(14)
1
0.0361(5)
H25A
  0.1117
0.7289
−0.2529
1
0.054
H25B
  0.1053
0.6598
−0.1875
1
0.054
H25C
  0.195
0.6412
−0.2488
1
0.054
C31
  0.36248(16)
1.00778(13)
−0.04883(10)
1
0.0195(4)
H31A
  0.3848
0.9679
−0.009
1
0.023
H31B
  0.4272
1.0094
−0.0819
1
0.023
C32
  0.34172(18)
1.10662(12)
−0.02159(11)
1
0.0212(4)
H32A
  0.3272
1.149
−0.0613
1
0.025
H32B
  0.2742
1.1072
  0.0092
1
0.025
C33
  0.44570(19)
1.13955(14)
  0.01904(12)
1
0.0273(5)
H33A
  0.5137
1.1282
−0.0102
1
0.033
H33B
  0.453
1.1004
  0.0613
1
0.033
C34
  0.44740(19)
1.24164(14)
  0.04199(11)
1
0.0248(4)
C35
  0.5515(2)
1.25841(17)
  0.08801(15)
1
0.0416(6)
H35A
  0.5496
1.2159
  0.128
1
0.062
H35B
  0.5509
1.3227
  0.1048
1
0.062
H35C
  0.6206
1.2474
  0.0607
1
0.062
C36
  0.4479(2)
1.30687(14)
−0.01973(12)
1
0.0311(5)
H36A
  0.4469
1.3713
−0.0031
1
0.047
H36B
  0.3805
1.2954
−0.0486
1
0.047
H36C
  0.5164
1.2963
−0.0477
1
0.047
O1
  0.14964(13)
1.06111(9)
  0.12688(7)
1
0.0244(3)
O2
  0.12829(13)
0.55129(11)
−0.06415(9)
1
0.0329(4)
O3
  0.32361(13)
0.53951(11)
−0.05252(9)
1
0.0328(4)
O4
  0.18522(11)
0.92032(9)
  0.02297(7)
1
0.0169(3)
O5
  0.06782(11)
1.00004(10)
−0.04854(7)
1
0.0215(3)
O6
  0.23721(13)
1.01397(10)
−0.14731(7)
1
0.0221(3)
HO6
  0.170(3)
1.007(2)
−0.1577(16)
1
0.0
O7
  0.09736(13)
0.82269(11)
−0.13360(9)
1
0.0326(4)
O8
  0.23961(13)
0.74537(10)
−0.18490(8)
1
0.0289(3)
O9
  0.34591(17)
1.25612(12)
  0.08302(10)
1
0.0403(4)
HO9
  0.346(3)
1.315(2)
  0.0956(15)
1
0.0
C51
  0.1062(3)
0.5267(2)
  0.2091(2)
1
0.0688(11
H51A
  0.105
0.4613
  0.1948
1
0.103
H51B
  0.0453
0.5604
  0.1851
1
0.103
H51C
  0.0948
0.531
  0.2597
1
0.103
O52
  0.21050(17)
0.56578(12)
  0.19155(11)
1
0.0451(5)
H52
  0.204(3)
0.632(3)
  0.1905(18)
1
0.068
O61
  0.03166(17)
1.03110(13)
−0.21801(10)
1
0.0431(4)
H61
−0.026(3)
1.028(3)
−0.1858(18)
1
0.065
C62
−0.0021(2)
0.96665(19)
−0.26999(14)
1
0.0428(6)
H62A
  0.0298
0.9852
−0.3152
1
0.064
H62B
−0.0852
0.9655
−0.2731
1
0.064
H62C
  0.0257
0.9046
−0.2576
1
0.064
O71
  0.35707(17)
1.45528(12)
  0.12174(10)
1
0.0408(4)
H71A
  0.410(2)
1.489(2)
  0.0914(15)
1
0.061
H71B
  0.301(2)
1.498(2)
  0.1443(16)
1
0.061

EXAMPLE 3: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2S)-MALATE (SYNONYMOUS: HOMOHARRINGTONINE (2S)-BIMALATE)

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2S)-(−)-malic acid (natural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205.4-207.7° C. from MeOH (measured by DSC, see FIG. 3.2). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below)

1H NMR (400 MHz, Methanol-d4)* δ 6.79 (s, 1H), 6.74 (s, 1H), 6.09 (dd, J=9.6, 0.6 Hz, 1H), 5.96 (d, J=1.1 Hz, 1H), 5.93 (d, J=1.1 Hz, 1H), 5.33 (d, J=0.6 Hz, 1H), 4.24 (dd, J=7.4, 5.4 Hz, 1H), 4.16 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.50 (dd, J=9.5, 4.3 Hz, 1H), 3.42-3.32 (m, 1H), 3.21-3.10 (m, 1H), 2.76 (dd, J=15.9, 5.5 Hz, 1H), 2.71-2.62 (m, 1H), 2.48 (dd, J=15.8, 7.4 Hz, 1H), 2.26-2.05 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.29-1.17 (m, 1H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

1H NMR (600 MHz, Deuterium oxide)* δ 6.84 (s, 1H), 6.76 (s, 1H), 6.01 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (d, J=0.6 Hz, 1H), 4.31 (dd, J=8.2, 4.2 Hz, 1H), 4.19 (d, J=9.6 Hz, 1H), 3.76 (s, 3H), 3.52 (s, 3H), 3.52 (m, 1H), 3.42-3.32 (m, 1H), 3.30-3.23 (m, 1H), 3.22-3.15 (m, 1H), 2.76 (dd, J=16.0, 4.2 Hz, 1H), 2.74-2.68 (m, 1H), 2.57 (dd, J=16.0, 8.2 Hz, 1H), 2.36 (d, J=17.0 Hz, 1H), 2.29-2.08 (m, 2H), 1.99 (d, J=16.9 Hz, 1H), 1.97-1.89 (m, 1H), 1.45-1.37 (m, 2H), 1.36-1.26 (m, 3H), 1.12 (s, 6H), 1.12-1.02 (m, 1H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, MeOD) δ 179.23, 176.13, 174.23, 171.61, 165.05, 149.76, 148.75, 130.92, 126.86, 114.85, 111.80, 102.86, 96.12, 78.09, 76.08, 74.35, 71.27, 69.35, 59.01, 54.21, 53.27, 52.07, 48.94, 44.76, 44.06, 41.80, 40.88, 40.52, 29.25, 29.23, 29.17, 19.95, 19.09.

13C NMR APT* (101 MHz, D2O) δ 178.97, 176.21, 174.23, 171.93, 162.88, 147.83, 146.74, 129.74, 125.22, 113.38, 111.12, 101.62, 95.52, 76.98, 75.25, 73.68, 71.34, 68.50, 58.41, 52.95, 52.24, 51.25, 47.58, 42.71, 42.54, 40.00, 39.18, 38.76, 27.69, 27.58, 27.47, 18.58, 17.68.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3404, 2969, 2601, 1981, 1758, 1736, 1712, 1657, 1525, 1505, 1490, 1468, 1435, 1374, 1353, 1265, 1226, 1188, 1148, 1080, 1032, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510, 477. See FIG. 1.2

IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1596, 1506, 1490, 1440, 1373, 1266, 1224, 1168, 1084, 1033, 929, 710, 615, 566, 509, 477, 0, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510. See FIG. 1.2

Solubility in neutral water: higher than 60 mg/mL

A. Single Crystal X-Ray Diffraction (See FIGS. 2.3.1 and 2.3.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.46×0.29 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C33H45NO14
Extended formula
C29H40NO9, C4H5O5
Formula weight
 679.7
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 11.488(2) Å, α = 90°
b = 15.399(3) Å, β = 90°
c = 18.825(4) Å, γ = 90°
Volume
3330.2(11) Å3
Z, Calculated density
4, 1.356 (g · cm−1)
Absorption coefficient
0.106 mm−1
F(000)
1448
Crystal size
0.58 × 0.46 × 0.29 mm
Crystal color
white
Theta range for data collection
3.09 to 27.48°
h_min, h_max
−14, 14
k_min, k_max
−19, 13
l_min, l_max
−18, 24
Reflections collected/unique
28567/4233 [aR(int) = 0.1176]
Reflections [I > 2σ]
2414
Completeness to theta_max
  0.998
Absorption correction type
multi-scan
Max. and min. transmission
0.970, 0.688
Refinement method:
Full-matrix least-squares on F2
Data/restraints/parameters
4233/0/440
bGoodness-of-fit
  1.038
Final R indices [I > 2σ]:
cR1 = 0.0735, dwR2 = 0.1727
R indices (all data):
cR1 = 0.1366, dwR2 = 0.2124
Largest diff. peak and hole
0.555 and −0.27 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.3.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.8902(5)
  0.0603(4)
0.7067(3)
1
0.0450(15)
H1
0.8742
  0.0363
0.7521
1
0.054
C2
0.8846(5)
  0.0175(4)
0.6464(3)
1
0.0405(13)
C3
0.9163(5)
  0.0678(4)
0.5821(3)
1
0.0412(14)
H3
0.9896
  0.0445
0.5606
1
0.049
C4
0.9359(4)
  0.1614(4)
0.6109(3)
1
0.0355(13)
H4
1.0189
  0.1762
0.6007
1
0.043
C5
0.9255(5)
  0.1528(4)
0.6934(3)
1
0.0391(13)
C6
1.0363(5)
  0.1790(5)
0.7327(3)
1
0.0501(16)
H6A
1.0975
  0.1343
0.7269
1
0.06
H6B
1.0662
  0.2352
0.7148
1
0.06
C7
0.9996(6)
  0.1865(5)
0.8099(3)
1
0.0584(18)
H7A
1.0501
  0.2277
0.836
1
0.07
H7B
1.0023
  0.1293
0.8339
1
0.07
C8
0.8744(6)
  0.2204(5)
0.8049(3)
1
0.0539(17)
H8A
0.8215
  0.1843
0.834
1
0.065
H8B
0.8701
  0.2812
0.8219
1
0.065
N9
0.8411(4)
  0.2153(4)
0.7276(3)
1
0.0432(12)
H9
0.8561
  0.2696
0.7081
1
0.052
C10
0.7137(5)
  0.1984(5)
0.7172(3)
1
0.0496(16)
H10A
0.6691
  0.2495
0.7338
1
0.06
H10B
0.6904
  0.148
0.7467
1
0.06
C11
0.6826(4)
  0.1802(4)
0.6402(3)
1
0.0436(14)
H11A
0.7034
  0.1193
0.6287
1
0.052
H11B
0.5974
  0.1864
0.6341
1
0.052
C12
0.7435(4)
  0.2399(4)
0.5885(3)
1
0.0401(14)
C13
0.8622(4)
  0.2320(4)
0.5758(3)
1
0.0349(13)
C14
0.9172(4)
  0.2871(4)
0.5278(3)
1
0.0364(13)
H14
0.9984
  0.2823
0.5191
1
0.044
C15
0.8516(5)
  0.3487(4)
0.4933(3)
1
0.0441(15)
C16
0.7360(5)
  0.3568(4)
0.5058(4)
1
0.0464(15)
C17
0.6788(5)
  0.3043(4)
0.5538(3)
1
0.0437(15)
H17
0.598
  0.3115
0.563
1
0.052
C18
0.7884(6)
  0.4626(5)
0.4322(5)
1
0.076(2)
H18A
0.8017
  0.5203
0.4539
1
0.091
H18B
0.7749
  0.4707
0.3807
1
0.091
C19
0.8154(7)
−0.1118(5)
0.6969(4)
1
0.066(2)
H19A
0.8787
−0.115
0.7317
1
0.099
H19B
0.7907
−0.1707
0.6841
1
0.099
H19C
0.7496
−0.0802
0.7175
1
0.099
C21
0.8355(4)
  0.0154(4)
0.4745(3)
1
0.0382(13)
C22
0.7306(5)
  0.0234(4)
0.4248(3)
1
0.0412(14)
C23
0.7103(5)
  0.1202(4)
0.4059(3)
1
0.0379(13)
H23A
0.6413
  0.1246
0.3746
1
0.046
H23B
0.6932
  0.1527
0.4501
1
0.046
C24
0.8129(5)
  0.1618(4)
0.3693(3)
1
0.0409(14)
C25
0.8695(6)
  0.2717(5)
0.2887(4)
1
0.069(2)
H25A
0.9088
  0.31
0.3226
1
0.104
H25B
0.8353
  0.3065
0.2505
1
0.104
H25C
0.9259
  0.2308
0.2686
1
0.104
C31
0.6209(5)
−0.0103(4)
0.4625(3)
1
0.0450(14)
H31A
0.6041
  0.028
0.5035
1
0.054
H31B
0.5544
−0.006
0.4293
1
0.054
C32
0.6293(5)
−0.1031(4)
0.4889(4)
1
0.0491(16)
H32A
0.6941
−0.108
0.5233
1
0.059
H32B
0.6462
−0.1422
0.4484
1
0.059
C33
0.5166(6)
−0.1309(5)
0.5242(4)
1
0.0596(19)
H33A
0.4518
−0.1174
0.4914
1
0.072
H33B
0.5056
−0.0947
0.5672
1
0.072
C34
0.5053(7)
−0.2260(5)
0.5462(4)
1
0.069(2)
C35
0.6051(10)
−0.2507(6)
0.5911(5)
1
0.100(3)
H35A
0.5942
−0.3101
0.6086
1
0.15
H35B
0.6107
−0.2108
0.6315
1
0.15
H35C
0.6769
−0.2477
0.563
1
0.15
C36
0.3912(10)
−0.2401(7)
0.5849(6)
1
0.112(4)
H36A
0.3267
−0.2205
0.5549
1
0.168
H36B
0.3914
−0.2069
0.6293
1
0.168
H36C
0.3818
−0.302
0.5955
1
0.168
O31
0.5016(6)
−0.2752(4)
0.4798(3)
1
0.104(2)
H31
0.4952
−0.3283
0.4889
1
0.156
O1
0.8553(4)
−0.0674(3)
0.6348(2)
1
0.0543(11)
O2
0.6901(4)
  0.4222(3)
0.4640(3)
1
0.0625(13)
O3
0.8872(4)
  0.4087(3)
0.4432(2)
1
0.0560(13)
O21
0.8226(3)
  0.0660(2)
0.53083(19)
1
0.0371(9)
O22
0.9152(3)
−0.0342(3)
0.4646(2)
1
0.0507(11)
O23
0.7478(3)
−0.0256(3)
0.3627(2)
1
0.0426(10)
H23
0.8145
−0.0155
0.3464
1
0.064
O24
0.9138(3)
  0.1434(3)
0.3794(2)
1
0.0522(12)
O25
0.7785(4)
  0.2240(3)
0.3248(3)
1
0.0561(12)
C51
0.8039(5)
  0.4264(5)
0.7157(4)
1
0.0518(17)
C52
0.7548(6)
  0.5067(5)
0.6770(4)
1
0.0531(17)
H52
0.7672
  0.5593
0.7073
1
0.064
C53
0.6259(6)
  0.4973(5)
0.6614(4)
1
0.060(2)
H53A
0.606
  0.5382
0.6226
1
0.072
H53B
0.6125
  0.4379
0.6431
1
0.072
C54
0.5421(6)
  0.5127(5)
0.7216(4)
1
0.065(2)
O51
0.8885(4)
  0.3887(3)
0.6897(3)
1
0.0557(12)
O52
0.7540(6)
  0.4053(4)
0.7716(3)
1
0.095(2)
O53
0.8147(6)
  0.5173(5)
0.6130(4)
1
0.100(2)
H53
0.8805
  0.4937
0.6161
1
0.15
O54
0.5697(6)
  0.4866(5)
0.7821(3)
1
0.097(2)
H54
0.5978
  0.4363
0.7791
1
0.146
O55
0.4515(5)
  0.5523(5)
0.7122(3)
1
0.110(3)

B. X-Ray Powder Diffraction

The sample is pure and there is a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.3.3)

EXAMPLE 4: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2R)-MALATE (DIASTEREOMER OF EXAMPLE 3)

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2R)-(+)-malic acid (unnatural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205-208° C. from MeOH (measured by DSC, see FIG. 3.3). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.3)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.26 (dd, J=7.4, 5.5 Hz, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.53 (s, 1H), 3.34 (s, 2H), 3.22-3.12 (m, 1H), 2.77 (dd, J=15.9, 5.4 Hz, 1H), 2.72-2.64 (m, 1H), 2.49 (dd, J=15.9, 7.4 Hz, 1H), 2.29-2.05 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.18 (m, 6H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 179.21, 176.06, 174.25, 171.63, 165.07, 149.78, 148.77, 130.94, 126.88, 114.85, 111.80, 102.88, 96.10, 78.07, 76.09, 74.36, 71.28, 69.33, 59.00, 54.22, 53.31, 52.07, 44.77, 44.06, 41.76, 40.88, 40.54, 29.27, 29.22, 19.94, 19.10.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3467, 3384, 2970, 2051, 1762, 1737, 1708, 1655, 1607, 1533, 1509, 1494, 1469, 1440, 1376, 1349, 1333, 1292, 1258, 1230, 1208, 1167, 1147, 1121, 1080, 1032, 985, 942, 926, 888, 865, 820, 771, 754, 717, 690, 675, 648, 616, 563, 542, 513, 476. See FIG. 1.3

IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1598, 1506, 1490, 1440, 1373, 1266, 1224, 1169, 1084, 1033, 929, 709, 567, 511. See FIG. 1.3

A. Single Crystal X-Ray Diffraction (See FIGS. 2.4.1 and 2.4.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.55×0.48×0.4 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C34H49NO15
Extended formula
C29H40NO9, C4H5O5, CH4O
Formula weight
 711.74
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions:
a = 11.3958(8) Å,
α = 90°
b = 15.5163(16) Å,
β = 90°
c = 19.3680(16) Å,
γ = 90°
Volume
3424.7(5) Å3
Z, Calculated density
4, 1.38 (g · cm−1)
Absorption coefficient
0.108 mm−1
F(000)
1520
Crystal size
0.55 × 0.48 × 0.4 mm
Crystal color
colourless
Theta range for data collection
3.06 to 27.47°
h_min, h_max
−14, 14
k_min, k_max
−20, 11
l_min, l_max
−25, 14
Reflections collected/unique
14680/4317 [aR(int) = 0.0515]
Reflections [I > 2σ]
3608
Completeness to theta_max
  0.989
Absorption correction type
multi-scan
Max. and min. transmission
0.958, 0.839
Refinement method:
Full-matrix least-squares on F2
Data/restraints/parameters
4317/0/474
bGoodness-of-fit
  1.034
Final R indices [I > 2σ]:
cR1 = 0.0397, dwR2 = 0.0825
R indices (all data):
cR1 = 0.0531, dwR2 = 0.0878
Largest diff. peak and hole
0.26 and −0.27 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.4.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.8742(2)
  0.06078(16)
  0.19603(12)
1
0.0184(5)
H1
0.8565
  0.0356
  0.2395
1
0.022
C2
0.8762(2)
  0.01795(16)
  0.13644(13)
1
0.0188(5)
C3
0.9050(2)
  0.07250(16)
  0.07486(11)
1
0.0170(5)
H3
0.9806
  0.0529
  0.0538
1
0.02
C4
0.9198(2)
  0.16514(15)
  0.10526(11)
1
0.0162(5)
H4
1.0039
  0.1809
  0.098
1
0.019
C5
0.9039(2)
  0.15418(16)
  0.18536(12)
1
0.0174(5)
C6
1.0098(2)
  0.18290(17)
  0.22700(12)
1
0.0235(6)
H6A
1.037
  0.2405
  0.2119
1
0.028
H6B
1.0752
  0.1413
  0.2222
1
0.028
C7
0.9654(3)
  0.18574(18)
  0.30140(13)
1
0.0267(6)
H7A
1.0095
  0.2288
  0.3288
1
0.032
H7B
0.9732
  0.1286
  0.3237
1
0.032
C8
0.8361(3)
  0.21154(17)
  0.29473(12)
1
0.0238(6)
H8A
0.7851
  0.1693
  0.3186
1
0.029
H8B
0.8226
  0.2692
  0.3151
1
0.029
N9
0.81061(19)
  0.21246(14)
  0.21739(10)
1
0.0176(4)
H9
0.825(3)
  0.269(2)
  0.2017(17)
1
0.05
C10
0.6851(2)
  0.19196(17)
  0.20232(13)
1
0.0218(6)
H10A
0.635
  0.2391
  0.2201
1
0.026
H10B
0.6631
  0.1385
  0.227
1
0.026
C11
0.6617(2)
  0.18021(15)
  0.12509(12)
1
0.0191(5)
H11A
0.6845
  0.121
  0.1116
1
0.023
H11B
0.5764
  0.1864
  0.1166
1
0.023
C12
0.7267(2)
  0.24357(15)
  0.07984(12)
1
0.0173(5)
C13
0.8483(2)
  0.23587(15)
  0.07084(11)
1
0.0158(5)
C14
0.9095(2)
  0.29500(15)
  0.02929(12)
1
0.0183(5)
H14
0.9918
  0.2903
  0.0226
1
0.022
C15
0.8457(2)
  0.35990(16)
−0.00131(12)
1
0.0200(5)
C16
0.7266(2)
  0.36742(16)
  0.00808(13)
1
0.0208(5)
C17
0.6642(2)
  0.31099(15)
  0.04811(12)
1
0.0188(5)
H17
0.582
  0.3171
  0.0542
1
0.023
C18
0.7889(2)
  0.4844(2)
−0.04641(17)
1
0.0369(7)
H18A
0.802
  0.5311
−0.0125
1
0.044
H18B
0.7814
  0.5104
−0.0929
1
0.044
C19
0.8404(3)
−0.11951(17)
  0.18391(15)
1
0.0307(6)
H19A
0.912
−0.1207
  0.2119
1
0.046
H19B
0.8203
−0.1782
  0.1695
1
0.046
H19C
0.7759
−0.0954
  0.2113
1
0.046
C21
0.8370(2)
 0.02556(14)
−0.03526(12)
1
0.0158(5)
C22
0.7342(2)
 0.02954(15)
−0.08511(12)
1
0.0162(5)
C23
0.7016(2)
 0.12332(15)
−0.10139(12)
1
0.0187(5)
H23A
0.6336
 0.1238
−0.1332
1
0.022
H23B
0.6773
 0.1523
−0.0582
1
0.022
C24
0.8000(2)
 0.17318(15)
−0.13336(12)
1
0.0184(5)
C25
0.8506(3)
 0.2801(2)
−0.21480(17)
1
0.0398(8)
H25A
0.8814
 0.321
−0.1808
1
0.06
H25B
0.8156
 0.3119
−0.2534
1
0.06
H25C
0.9146
 0.2438
−0.232
1
0.06
C31
0.6261(2)
−0.01467(15)
−0.05365(12)
1
0.0180(5)
H31A
0.599
  0.02
−0.0139
1
0.022
H31B
0.5625
−0.0146
−0.0885
1
0.022
C32
0.6456(2)
−0.10722(15)
−0.02934(12)
1
0.0181(5)
H32A
0.7012
−0.1076
  0.0099
1
0.022
H32B
0.6803
−0.1416
−0.0673
1
0.022
C33
0.5293(2)
−0.14767(15)
−0.00701(13)
1
0.0196(5)
H33A
0.4777
−0.151
−0.048
1
0.024
H33B
0.4913
−0.1082
  0.0264
1
0.024
C34
0.5349(2)
−0.23726(16)
  0.02570(12)
1
0.0202(5)
C35
0.4125(2)
−0.26450(18)
  0.04804(15)
1
0.0280(6)
H35A
0.4172
−0.3188
  0.0737
1
0.042
H35B
0.363
−0.2724
  0.0072
1
0.042
H35C
0.3785
−0.2198
  0.0777
1
0.042
C36
0.5878(3)
−0.30546(16)
−0.02198(14)
1
0.0261(6)
H36A
0.6674
−0.2881
−0.0353
1
0.039
H36B
0.5391
−0.3111
−0.0634
1
0.039
H36C
0.591
−0.3609
  0.0022
1
0.039
O1
0.85935(16)
−0.06660(11)
  0.12358(9)
1
0.0246(4)
O2
0.88492(17)
  0.42476(12)
−0.04504(10)
1
0.0291(5)
HO2
0.832(3)
−0.035(2)
−0.1469(17)
1
0.05
O3
0.68491(16)
  0.43735(12)
−0.02943(10)
1
0.0313(5)
O4
0.81179(14)
  0.06809(10)
  0.02407(8)
1
0.0175(4)
O5
0.92726(15)
−0.01197(11)
−0.04651(9)
1
0.0229(4)
O6
0.76585(17)
−0.01235(11)
−0.14790(8)
1
0.0213(4)
O7
0.90141(17)
  0.16881(12)
−0.11593(10)
1
0.0289(4)
O8
0.76172(16)
  0.22615(12)
−0.18254(10)
1
0.0294(5)
O9
0.60916(17)
−0.22805(12)
  0.08630(9)
1
0.0220(4)
HO9
0.624(3)
−0.279(2)
  0.1042(17)
1
0.05
C51
0.8226(2)
  0.44762(17)
  0.18302(13)
1
0.0236(6)
C52
0.7112(2)
  0.45571(16)
  0.22623(13)
1
0.0224(6)
H52
0.721
  0.5059
  0.2581
1
0.027
C53
0.6023(2)
  0.47238(16)
  0.18092(13)
1
0.0224(5)
H53A
0.612
  0.4418
  0.1364
1
0.027
H53B
0.5323
  0.4483
  0.2042
1
0.027
C54
0.5820(2)
  0.56740(17)
  0.16673(12)
1
0.0207(5)
O51
0.84243(18)
  0.51249(12)
  0.14213(10)
1
0.0327(5)
O52
0.88827(16)
  0.38509(12)
  0.18781(10)
1
0.0289(4)
O53
0.69947(19)
  0.38065(13)
  0.26660(10)
1
0.0341(5)
H53
0.628(3)
  0.377(2)
  0.2833(17)
1
0.05
O54
0.48847(17)
  0.60192(12)
  0.18067(9)
1
0.0274(4)
O55
0.67121(17)
  0.60868(11)
  0.14119(9)
1
0.0263(4)
H55
0.757(3)
  0.559(2)
  0.1382(16)
1
0.05
C61
0.4392(3)
  0.46918(18)
  0.34036(15)
1
0.0321(7)
H61A
0.3848
  0.4648
  0.3794
1
0.048
H61B
0.3981
  0.4932
  0.3003
1
0.048
H61C
0.5048
  0.5069
  0.3529
1
0.048
O62
0.4827(2)
  0.38596(14)
  0.32369(11)
1
0.0418(6)
H62
0.457(3)
  0.347(2)
  0.3498(17)
1
0.05

B. X-Ray Powder Diffraction

The sample was pure, there is no doubt that this is the correct phase. However there is a gap of certain diffraction lines, which would be associated with a variation of unit cell parameters. There may be a change in the rate of hydration for example, to cause such a phenomenon (for view of diagrams and experimental details, see FIG. 2.4.3).

EXAMPLE 5: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2S,3S)-TARTRATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2S,3S-(−)-tartaric acid (unnatural form) according to the general procedure, then isolated as a white prismatic solid mp 202-205° C. (uncorrected) from MeOH. (198.1-203.9, measured by DSC, see FIG. 3.4). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.4)

1H NMR (400 MHz, Methanol-d4)* δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.5 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 2.24 (d, J=16.2 Hz, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 176.81, 174.28, 171.67, 165.24, 149.87, 148.85, 130.83, 126.76, 114.91, 111.89, 102.93, 96.04, 78.34, 76.13, 74.38, 74.10, 71.32, 59.10, 54.28, 53.22, 52.12, 44.80, 44.09, 40.91, 40.46, 29.20, 29.19, 19.95, 19.13.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3502, 3048, 2971, 2884, 2051, 1981, 1765, 1736, 1656, 1592, 1506, 1490, 1432, 1375, 1348, 1321, 1295, 1265, 1227, 1205, 1165, 1147, 1111, 1081, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510, 477. See FIG. 1.4

IR (Diamond ATR, film) cm−1 3419, 2963, 1741, 1656, 1611, 1506, 1489, 1440, 1373, 1265, 1224, 1168, 1118, 1083, 1035, 983, 928, 674, 614, 512, 477. See FIG. 1.4

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.5.1 and 2.5.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.35×0.28×0.19 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
33H45NO15
Extended formula
C33H45N1O15
Formula weight
 695.7
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 10.7962(3) Å, α = 90°
b = 16.3649(5) Å, β = 90°
c = 18.6773(5) Å, γ = 90°
Volume
3299.88(16) Å3
Z, Calculated density
4, 1.4 (g · cm−1)
Absorption coefficient
0.111 mm−1
F(000)
1480
Crystal size
0.35 × 0.28 × 0.19 mm
Crystal color
colourless
Theta range for data collection
3.12 to 27.48°
h_min, h_max
−14, 14
k_min, k_max
−18, 21
l_min, l_max
−23, 24
Reflections collected/unique
53493/4200 [aR(int) = 0.0357]
Reflections [I > 2σ]
4022
Completeness to theta_max
  0.997
Absorption correction type
multi-scan
Max. and min. transmission
0.979, 0.921
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
4200/0/464
bGoodness-of-fit
  1.044
Final R indices [I > 2σ]:
cR1 = 0.0289, dwR2 = 0.0766
R indices (all data):
cR1 = 0.0308, dwR2 = 0.0781
Largest diff. peak and hole:
0.245 and −0.156 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.5.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.60365(16)
0.56010(10
0.77843(9)
1
0.0207(3)
H1
0.6286
0.5375
0.7338
1
0.025
C2
0.59199(16)
0.51759(10)
0.83901(9)
1
0.0204(3)
C3
0.54863(14)
0.56685(9)
0.90214(8)
1
0.0173(3)
H3
0.4655
0.5475
0.9185
1
0.021
C4
0.53958(14)
0.65545(9)
0.87170(8)
1
0.0159(3)
H4
0.4499
0.6705
0.8739
1
0.019
C5
0.57198(15)
0.64844(10)
0.79030(9)
1
0.0176(3)
C6
0.46897(15)
0.68171(10)
0.74191(8)
1
0.0209(3)
H6A
0.4358
0.7336
0.7612
1
0.025
H6B
0.4003
0.6418
0.738
1
0.025
C7
0.52972(18)
0.69568(12)
0.66864(9)
1
0.0279(4)
H7A
0.4941
0.7444
0.6449
1
0.034
H7B
0.5177
0.6476
0.6372
1
0.034
C8
0.66784(17)
0.70863(10)
0.68489(9)
1
0.0232(3)
H8A
0.7186
0.6657
0.6617
1
0.028
H8B
0.6957
0.7627
0.6674
1
0.028
N9
0.67903(13)
0.70357(8)
0.76564(7)
1
0.0175(3)
H9
0.667(3)
0.7517(18)
0.7806(16)
1
0.05
C10
0.80715(16)
0.68107(11)
0.78842(9)
1
0.0233(3)
H10A
0.8653
0.7246
0.7736
1
0.028
H10B
0.8321
0.6299
0.7641
1
0.028
C11
0.81574(15)
0.66918(10)
0.86982(9)
1
0.0211(3)
H11A
0.7888
0.613
0.8818
1
0.025
H11B
0.9033
0.6749
0.8847
1
0.025
C12
0.73790(14)
0.72935(10)
0.91171(9)
1
0.0183(3)
C13
0.60770(14)
0.72158(9)
0.91235(8)
1
0.0160(3)
C14
0.53534(15)
0.77926(9)
0.94934(8)
1
0.0177(3)
H14
0.4476
0.7753
0.9498
1
0.021
C15
0.59463(16)
0.84150(10)
0.98478(9)
1
0.0203(3)
C16
0.72235(16)
0.84894(10)
0.98391(9)
1
0.0228(3)
C17
0.79564(15)
0.79481(11)
0.94736(9)
1
0.0215(3)
H17
0.8831
0.8013
0.9461
1
0.026
C18
0.64308(19)
0.95977(12)
1.03596(11)
1
0.0325(4)
H18A
0.6364
1.0053
1.0012
1
0.039
H18B
0.6407
0.9827
1.085
1
0.039
C19
0.6668(2)
0.39314(10)
0.79407(10)
1
0.0279(4)
H19A
0.7405
0.4221
0.7771
1
0.042
H19B
0.6068
0.3884
0.7549
1
0.042
H19C
0.6903
0.3384
0.8106
1
0.042
C21
0.60705(15)
0.51652(9)
1.01819(8)
1
0.0167(3)
C22
0.72136(14)
0.50930(9)
1.06633(8)
1
0.0166(3)
C23
0.77327(15)
0.59411(9)
1.08420(9)
1
0.0192(3)
H23A
0.8471
0.5876
1.1151
1
0.023
H23B
0.8004
0.6208
1.0393
1
0.023
C24
0.68149(16)
0.64899(10)
1.12155(9)
1
0.0217(3)
C25
0.6586(2)
0.76969(15)
1.18925(17)
1
0.0533(7)
H25A
0.6067
0.7412
1.2243
1
0.08
H25B
0.6057
0.7964
1.1536
1
0.08
H25C
0.709
0.8109
1.2137
1
0.08
C31
0.82188(15)
0.46027(9)
1.02660(9)
1
0.0191(3)
H31A
0.8479
0.4917
0.9839
1
0.023
H31B
0.8949
0.4551
1.0583
1
0.023
C32
0.78268(16)
0.37451(9)
1.00245(9)
1
0.0197(3)
H32A
0.7604
0.3411
1.0447
1
0.024
H32B
0.709
0.3784
0.9711
1
0.024
C33
0.88905(17)
0.33394(10)
0.96190(10)
1
0.0233(3)
H33A
0.9647
0.3386
0.9916
1
0.028
H33B
0.9038
0.3655
0.9175
1
0.028
C34
0.87253(17)
0.24391(10)
0.94135(9)
1
0.0230(3)
C35
0.98538(19)
0.21661(13)
0.89846(13)
1
0.0370(5)
H35A
0.9902
0.2482
0.854
1
0.055
H35B
0.9779
0.1584
0.8871
1
0.055
H35C
1.0605
0.2258
0.9268
1
0.055
C36
0.8548(2)
0.18850(12)
1.00617(11)
1
0.0385(5)
H36A
0.8438
0.132
0.9901
1
0.058
H36B
0.7814
0.2059
1.0329
1
0.058
H36C
0.9279
0.192
1.0372
1
0.058
O1
0.61196(13)
0.43788(7)
0.85237(7)
1
0.0255(3)
O2
0.54324(13)
0.90276(8)
1.02592(7)
1
0.0284(3)
O3
0.75632(13)
0.91539(8)
1.02482(7)
1
0.0320(3)
O4
0.63780(10)
0.56087(7)
0.95949(6)
1
0.0183(2)
O5
0.50856(11)
0.48612(7)
1.02953(7)
1
0.0244(3)
O6
0.69079(12)
0.46715(7)
1.13040(6)
1
0.0221(2)
HO6
0.616(3)
0.4684(17)
1.1363(15)
1
0.05
O7
0.57142(13)
0.64049(9)
1.12151(10)
1
0.0408(4)
O8
0.73882(13)
0.71156(8)
1.15402(8)
1
0.0352(3)
O9
0.76355(13)
0.23916(8)
0.89708(8)
1
0.0302(3)
HO9
0.751(3)
0.1897(18)
0.8886(15)
1
0.05
C51
0.69752(17)
1.00450(11)
0.84160(9)
1
0.0240(3)
C52
0.75591(16)
0.92992(10)
0.80382(9)
1
0.0216(3)
H52
0.8202
0.9054
0.8358
1
0.026
C53
0.81501(17)
0.95062(11)
0.73116(9)
1
0.0248(3)
H53
0.7586
0.9885
0.7048
1
0.03
C54
0.94378(18)
0.99098(12)
0.73715(10)
1
0.0291(4)
O51
0.76283(13)
1.06995(8)
0.84564(8)
1
0.0331(3)
O52
0.59210(13)
0.99642(8)
0.86509(8)
1
0.0337(3)
O53
0.65877(13)
0.87221(7)
0.79311(7)
1
0.0276(3)
HO53
0.604(3)
0.8924(17)
0.8176(15)
1
0.05
O54
0.82858(17)
0.87829(10)
0.69067(9)
1
0.0424(4)
HO54
0.905(3)
0.8812(18)
0.6760(15)
1
0.05
O55
1.02589(15)
0.96663(11)
0.69804(9)
1
0.0465(4)
O56
0.95769(14)
1.05015(9)
0.78265(9)
1
0.0373(3)
HO56
0.868(3)
1.0629(17)
0.8111(14)
1
0.05

B. X-Ray Powder Diffraction

The sample was pure. There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.5.3).

EXAMPLE 6: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2R,3R)-TARTRATE (DIASTEREOMER OF EXAMPLE 5)

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (+)-(2R,3R)-tartaric acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 206-208° C. (uncorrected) from MeOH. (204.6-208.5, measured by DSC, see FIG. 3.5). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.5)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.7 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.44-3.32 (m, 2H), 3.28-3.16 (m, 1H), 2.69 (dd, J=13.7, 5.9 Hz, 1H), 2.27-2.21 (m, 2H), 2.21-1.97 (m, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.18 (m, 6H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 176.80, 174.24, 171.62, 165.20, 149.84, 148.83, 130.81, 126.73, 114.86, 111.85, 102.89, 96.00, 78.29, 76.09, 74.34, 74.07, 71.28, 59.05, 54.22, 53.18, 52.07, 44.76, 44.05, 40.87, 40.43, 29.23, 29.17, 29.15, 19.91, 19.10.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3491, 3044, 2969, 1762, 1737, 1654, 1587, 1506, 1489, 1464, 1431, 1375, 1320, 1295, 1259, 1229, 1210, 1172, 1149, 1107, 1082, 1028, 984, 940, 924, 866, 819, 804, 735, 690, 616, 565, 512, 476. See FIG. 1.5

IR (Diamond ATR, film) cm−1 3417, 2963, 1741, 1655, 1611, 1505, 1489, 1440, 1373, 1265, 1223, 1167, 1118, 1082, 1034, 983, 928, 769, 675, 614, 565, 510, 478, 0, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510. See FIG. 1.5

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.6.1 and 2.6.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.54×0.41×0.34 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C33H45NO15
Extended formula
C29H40NO9, C4H5O6
Formula weight
 695.7
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions:
a = 10.6770(3)
Å, α = 90°
b = 16.6169(6)
Å, β = 90°
c = 18.7442(7)
Å, γ = 90°
Volume
3325.6(2) Å3
Z, Calculated density
4, 1.39 (g · cm−1)
Absorption coefficient
0.110 mm−1
F(000)
1480
Crystal size
0.54 × 0.41 × 0.34 mm
Crystal color
colourless
Theta range for data collection
3.11 to 27.48°
h_min, h_max
−13, 10
k_min, k_max
−21, 19
l_min, l_max
−23, 15
Reflections collected/unique
15282/4165 [aR(int) = 0.0328]
Reflections [I > 2σ]
3523
Completeness to theta_max
  0.979
Absorption correction type
multi-scan
Max. and min. transmission
  0.963, 0.891
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
4165/0/458
bGoodness-of-fit
  1.021
Final R indices [I > 2σ]:
cR1 = 0.0368, dwR2 = 0.0759
R indices (all data):
cR1 = 0.0498, dwR2 = 0.0816
Largest diff. peak and hole
0.23 and −0.195 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.6.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.8908(2)
  0.06521(13)
0.73105(13)
1
0.0187(5)
H1
0.8694
  0.0434
0.7763
1
0.022
C2
0.9037(2)
  0.02207(13)
0.67131(13)
1
0.0194(5)
C3
0.9421(2)
  0.06998(13)
0.60762(12)
1
0.0170(5)
H3
1.0267
  0.0525
0.5907
1
0.02
C4
0.94749(19)
  0.15799(13)
0.63555(12)
1
0.0149(5)
H4
1.0376
  0.1742
0.6331
1
0.018
C5
0.91467(19)
  0.15286(12)
0.71688(12)
1
0.0164(5)
C6
1.0130(2)
  0.19306(14)
0.76376(13)
1
0.0210(5)
H6A
1.0399
  0.2449
0.7427
1
0.025
H6B
1.0873
  0.1579
0.7691
1
0.025
C7
0.9504(2)
  0.20687(17)
0.83590(14)
1
0.0310(6)
H7A
0.9805
  0.2574
0.858
1
0.037
H7B
0.9677
  0.1616
0.8688
1
0.037
C8
0.8100(2)
  0.21218(14)
0.81897(12)
1
0.0218(5)
H8A
0.7635
  0.1686
0.8434
1
0.026
H8B
0.7756
  0.2646
0.8345
1
0.026
N9
0.80013(17)
  0.20331(11)
0.73928(10)
1
0.0167(4)
H9
0.808(3)
  0.2532(19)
0.7212(17)
1
0.05
C10
0.6742(2)
  0.17363(14)
0.71581(13)
1
0.0212(5)
H10A
0.609
  0.2121
0.7316
1
0.025
H10B
0.6569
  0.1211
0.7386
1
0.025
C11
0.6677(2)
  0.16426(14)
0.63473(13)
1
0.0200(5)
H11A
0.6969
  0.1096
0.622
1
0.024
H11B
0.5792
  0.1689
0.6196
1
0.024
C12
0.7446(2)
  0.22516(13)
0.59340(13)
1
0.0178(5)
C13
0.87646(19)
  0.22060(12)
0.59378(12)
1
0.0142(5)
C14
0.9478(2)
  0.27752(13)
0.55633(12)
1
0.0176(5)
H14
1.0367
  0.2753
0.5567
1
0.021
C15
0.8861(2)
  0.33632(13)
0.51922(13)
1
0.0188(5)
C16
0.7568(2)
  0.34102(14)
0.51918(13)
1
0.0229(5)
C17
0.6842(2)
  0.28758(13)
0.55610(13)
1
0.0210(5)
H17
0.5955
  0.2924
0.5566
1
0.025
C18
0.8325(3)
  0.44907(16)
0.46298(16)
1
0.0358(7)
H18A
0.8347
  0.4683
0.413
1
0.043
H18B
0.8367
  0.4963
0.4951
1
0.043
C19
0.8337(2)
−0.10152(13)
0.71742(14)
1
0.0278(6)
H19A
0.8918
−0.1024
0.7579
1
0.042
H19B
0.8166
−0.1568
0.702
1
0.042
H19C
0.7552
−0.0756
0.7319
1
0.042
C21
0.8802(2)
  0.01342(12)
0.49504(13)
1
0.0172(5)
C22
0.7657(2)
  0.00350(13)
0.44714(12)
1
0.0171(5)
C23
0.7075(2)
  0.08447(12)
0.42747(13)
1
0.0185(5)
H23A
0.637
  0.0752
0.3942
1
0.022
H23B
0.6731
  0.1097
0.4711
1
0.022
C24
0.7990(2)
  0.14152(13)
0.39345(13)
1
0.0203(5)
C25
0.8218(2)
  0.26011(16)
0.32546(17)
1
0.0354(7)
H25A
0.8661
  0.2903
0.3626
1
0.053
H25B
0.7713
  0.2972
0.2968
1
0.053
H25C
0.8828
  0.2329
0.2947
1
0.053
C32
0.6115(2)
−0.17869(13)
0.54608(14)
1
0.0218(5)
H32A
0.5368
−0.179
0.5147
1
0.026
H32B
0.5885
−0.1491
0.59
1
0.026
C37
0.7146(2)
−0.13192(12)
0.50853(13)
1
0.0197(5)
H37A
0.7423
−0.1619
0.4657
1
0.024
H37B
0.7874
−0.1262
0.5409
1
0.024
C38
0.6679(2)
−0.04831(12)
0.48638(13)
1
0.0192(5)
H38A
0.6402
−0.0191
0.5296
1
0.023
H38B
0.594
−0.0549
0.455
1
0.023
C42
0.6411(2)
−0.26590(13)
0.56665(13)
1
0.0214(5)
C44
0.5296(2)
−0.30128(16)
0.60626(15)
1
0.0310(6)
H44A
0.5486
−0.3567
0.6205
1
0.047
H44B
0.456
−0.301
0.575
1
0.047
H44C
0.5122
−0.2689
0.6488
1
0.047
C45
0.6740(3)
−0.31800(14)
0.50279(15)
1
0.0351(7)
H45A
0.7474
−0.2955
0.4785
1
0.053
H45B
0.603
−0.3193
0.4697
1
0.053
H45C
0.6928
−0.3728
0.5189
1
0.053
O1
0.88885(17)
−0.05711(9)
0.65947(9)
1
0.0254(4)
O2
0.93569(16)
  0.39596(10)
0.47637(9)
1
0.0273(4)
O3
0.71970(17)
  0.40404(11)
0.47595(10)
1
0.0334(4)
O4
0.85067(13)
  0.06035(9)
0.55137(8)
1
0.0176(3)
O5
0.97892(14)
−0.01899(9)
0.48520(9)
1
0.0250(4)
O6
0.80450(16)
−0.03582(10)
0.38304(9)
1
0.0231(4)
HO6
0.878(3)
−0.0464(19)
0.3873(17)
1
0.05
O7
0.91117(15)
  0.13633(11)
0.39748(11)
1
0.0374(5)
O8
0.74109(15)
  0.20093(9)
0.35831(10)
1
0.0275(4)
O9
0.74716(17)
−0.26262(10)
0.61420(11)
1
0.0320(5)
HO9
0.755(3)
−0.307(2)
0.6285(18)
1
0.05
C51
0.5651(2)
 0.49263(15)
0.76865(15)
1
0.0299(6)
C52
0.6393(2)
 0.42749(13)
0.72898(15)
1
0.0237(5)
H52
0.6068
 0.4235
0.6791
1
0.028
C53
0.7815(2)
 0.44249(13)
0.72627(14)
1
0.022
H53
0.8101
 0.4609
0.7744
1
0.026
C54
0.8215(2)
 0.50558(14)
0.67017(14)
1
0.0241(5)
O51
0.5872(2)
 0.56776(10)
0.75398(12)
1
0.0416(5)
HO51
0.663(3)
 0.5688(18)
0.7178(18)
1
0.05
O52
0.48857(19)
 0.47183(12)
0.81317(11)
1
0.0462(6)
O53
0.61742(18)
 0.35372(10)
0.76410(12)
1
0.0383(5)
HO53
0.566(3)
 0.361(2)
0.7939(18)
1
0.05
O54
0.84448(16)
 0.36948(10)
0.70908(10)
1
0.0275(4)
HO54
0.887(3)
 0.3812(19)
0.6718(18)
1
0.05
O55
0.90625(17)
 0.48767(11)
0.62938(10)
1
0.0342(4)
O56
0.76291(16)
 0.57314(9)
0.67107(11)
1
0.0323(4)

A. X-Ray Powder Diffraction

The sample was pure and there was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.6.3).

EXAMPLE 7: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2″′S)-CITRAMALATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2S)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 195.9-198.9° C. (measured by DSC, see FIG. 3.6). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.6)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.45-3.31 (m, 2H), 3.19 (dd, J=10.6, 6.9 Hz, 1H), 2.70 (d, J=15.7 Hz, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.26-2.12 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.45-1.29 (m, 9H), 1.29-1.17 (m, 1H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 114.58, 111.53, 102.58, 95.71, 78.24, 76.08, 74.03, 73.18, 71.27, 58.75, 53.91, 52.90, 51.79, 48.63, 46.32, 44.47, 43.77, 40.59, 40.15, 28.94, 28.89, 28.87, 26.22, 19.62, 18.80.

IR (Diamond ATR, solid) cm−1 2965, 1759, 1739, 1710, 1651, 1506, 1489, 1371, 1341, 1225, 1162, 1079, 1033, 972, 944, 925, 885, 866, 830, 786, 714, 690, 643, 615, 584, 562, 511. See FIG. 1.6

IR (Diamond ATR, film) cm−1 3434, 2968, 1744, 1656, 1590, 1505, 1490, 1374, 1265, 1224, 1166, 1084, 1033, 930, 710, 565. See FIG. 1.6

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.102° (2θ) at 17.597° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).

EXAMPLE 8: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN (2′″R)-CITRAMALATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 202.7-204.7° C. (measured by DSC, see FIG. 3.7). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.7)

1H NMR (400 MHz, Methanol-d4)* δ 6.79 (s, 1H), 6.74 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.93 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.43-3.31 (m, 2H), 3.22-3.14 (m, 1H), 2.73-2.66 (m, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.23 (d, J=16.0 Hz, 2H), 2.19 (s, 1H), 1.94 (d, J=16.1 Hz, 1H), 1.44-1.29 (m, 8H), 1.29-1.17 (m, 1H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 111.82, 102.87, 96.00, 78.24, 76.08, 74.33, 73.18, 71.27, 59.04, 54.21, 53.20, 52.07, 48.94, 46.62, 44.76, 44.05, 40.87, 40.45, 29.23, 29.19, 29.17, 26.50, 19.92, 19.09.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3681, 3512, 2969, 2845, 1764, 1740, 1707, 1652, 1605, 1513, 1495, 1469, 1440, 1369, 1332, 1292, 1260, 1227, 1204, 1167, 1147, 1124, 1080, 1048, 1033, 1023, 991, 971, 930, 885, 869, 824, 786, 753, 718, 689, 676, 644, 614, 564, 512, 475. See FIG. 1.7

IR (Diamond ATR, film) cm−1 3434, 2968, 2845, 1742, 1655, 1582, 1506, 1490, 1458, 1374, 1265, 1224, 1166, 1084, 1047, 1033, 930, 831, 710, 565, 476. See FIG. 1.7

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.8.1 and 2.8.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.44×0.32×0.16 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C34H47NO14
Extended formula
C29H40NO9, C5H7O5
Formula weight
 693.73
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 10.3550(3) Å, α = 90°
b = 17.0899(6) Å, β = 90°
c = 19.2854(7) Å, γ = 90°
Volume
3412.9(2) Å3
Z, Calculated density
4, 1.35 (g · cm−1)
Absorption coefficient
0.105 mm−1
F(000)
1480
Crystal size
0.44 × 0.32 × 0.16 mm
Crystal color
colourless
Theta range for data collection
3.09 to 27.48°
h_min, h_max
−13, 13
k_min, k_max
−22, 20
l_min, l_max
−19, 25
Reflections collected/unique
16497/7790 [aR(int) = 0.0336]
Reflections [I > 2σ]
6790
Completeness to theta_max
  0.996
Absorption correction type
multi-scan
Max. and min. transmission
  0.983, 0.880
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
7790/0/462
bGoodness-of-fit
  1.026
Final R indices [I > 2σ]
cR1 = 0.0413, dwR2 = 0.0899
R indices (all data)
cR1 = 0.0508, dwR2 = 0.0948
Largest diff. peak and hole
0.403 and −0.199 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.8.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
  0.11571(16)
  0.05636(10)
0.26511(9)
1
0.0175(4)
H1
  0.1363
  0.0342
0.2213
1
0.021
C2
  0.09856(16)
  0.01523(10)
0.32323(9)
1
0.0171(4)
C3
  0.06120(16)
  0.06351(11)
0.38472(9)
1
0.0162(3)
H3
−0.0279
  0.0492
0.4002
1
0.019
C4
  0.06272(15)
  0.14871(10)
0.35705(9)
1
0.0143(3)
H4
−0.0287
  0.1675
0.3589
1
0.017
C5
  0.09821(15)
  0.14231(10)
0.27823(9)
1
0.0159(4)
C6
  0.00002(16)
  0.18455(11)
0.23179(9)
1
0.0195(4)
H6A
−0.0761
  0.1508
0.2234
1
0.023
H6B
−0.0293
  0.2336
0.254
1
0.023
C7
  0.06914(19)
  0.20226(14)
0.16369(10)
1
0.0282(5)
H7A
  0.0457
  0.255
0.1465
1
0.034
H7B
  0.046
  0.1632
0.1279
1
0.034
C8
  0.21369(17)
  0.19809(11)
0.18060(9)
1
0.0190(4)
H8A
  0.2545
  0.153
0.1569
1
0.023
H8B
  0.2581
  0.2467
0.166
1
0.023
N9
  0.22010(13)
  0.18836(9)
0.25825(7)
1
0.0156(3)
HN9
  0.215(2)
  0.2413(15)
0.2762(14)
1
0.05
C10
  0.34708(16)
  0.15611(11)
0.28115(9)
1
0.0187(4)
H10A
  0.4167
  0.193
0.2681
1
0.022
H10B
  0.3634
  0.1059
0.2571
1
0.022
C11
  0.35010(16)
  0.14274(11)
0.35966(9)
1
0.0182(4)
H11A
  0.313
  0.0906
0.3698
1
0.022
H11B
  0.4411
  0.1423
0.3753
1
0.022
C12
  0.27690(16)
  0.20378(10)
0.40075(9)
1
0.0161(3)
C13
  0.14095(15)
  0.20673(10)
0.39833(9)
1
0.0142(3)
C14
  0.07316(17)
  0.26533(10)
0.43397(9)
1
0.0168(4)
H14
−0.0183
  0.2688
0.4315
1
0.02
C15
  0.14387(18)
  0.31747(10)
0.47263(9)
1
0.0200(4)
C16
  0.27616(18)
  0.31308(11)
0.47618(9)
1
0.0207(4)
C17
  0.34575(17)
  0.25856(11)
0.43994(9)
1
0.0190(4)
H17
  0.4374
  0.258
0.4414
1
0.023
C18
  0.2137(2)
  0.41952(12)
0.53342(11)
1
0.0334(5)
H18A
  0.2207
  0.4679
0.5055
1
0.04
H18B
  0.2103
  0.4343
0.583
1
0.04
C19
  0.1546(2)
−0.10852(11)
0.27911(11)
1
0.0300(5)
H19A
  0.0911
−0.1088
0.2414
1
0.045
H19B
  0.1691
−0.1622
0.2952
1
0.045
H19C
  0.2361
−0.0864
0.2622
1
0.045
C21
  0.11247(16)
  0.01321(10)
0.49827(9)
1
0.0161(3)
C22
  0.22813(16)
  0.00398(10)
0.54736(9)
1
0.0178(4)
C23
  0.29449(17)
  0.08219(10)
0.56296(10)
1
0.0189(4)
H23A
  0.369
  0.0729
0.594
1
0.023
H23B
  0.3277
  0.1048
0.5192
1
0.023
C24
  0.20436(17)
  0.13941(10)
0.59644(10)
1
0.0196(4)
C25
  0.18690(19)
  0.25170(12)
0.66695(12)
1
0.0293(5)
H25A
  0.1478
  0.2853
0.6315
1
0.044
H25B
  0.2392
  0.2837
0.6984
1
0.044
H25C
  0.1187
  0.2253
0.6933
1
0.044
C31
  0.32662(17)
−0.05075(11)
0.51274(10)
1
0.0204(4)
H31A
  0.361
−0.0244
0.4709
1
0.025
H31B
  0.3997
−0.0586
0.5451
1
0.025
C32
  0.27492(18)
−0.13115(11)
0.49143(10)
1
0.0222(4)
H32A
  0.2495
−0.1609
0.5333
1
0.027
H32B
  0.1973
−0.1245
0.462
1
0.027
C33
  0.37715(18)
−0.17662(11)
0.45161(11)
1
0.0248(4)
H33A
  0.4587
−0.1741
0.4783
1
0.03
H33B
  0.3923
−0.1495
0.407
1
0.03
C34
  0.34851(18)
−0.26269(11)
0.43594(11)
1
0.0240(4)
C36
  0.4577(2)
−0.29453(13)
0.39087(14)
1
0.0423(6)
H36A
  0.4411
−0.3497
0.3801
1
0.063
H36B
  0.5397
−0.2899
0.4159
1
0.063
H36C
  0.4623
−0.2644
0.3477
1
0.063
C35
  0.3354(2)
−0.31160(13)
0.50108(12)
1
0.0363(5)
H35A
  0.2616
−0.2929
0.5283
1
0.054
H35B
  0.4144
−0.3071
0.5288
1
0.054
H35C
  0.3216
−0.3665
0.4884
1
0.054
O1
  0.10699(13)
−0.06191(7)
0.33525(7)
1
0.0244(3)
O2
  0.32223(14)
  0.37011(8)
0.52078(7)
1
0.0304(3)
O3
  0.09930(13)
  0.37738(8)
0.51464(7)
1
0.0288(3)
O4
  0.15171(11)
  0.05193(7)
0.44075(6)
1
0.0171(3)
O5
  0.00628(12)
−0.01257(8)
0.50746(7)
1
0.0222(3)
O6
  0.18733(13)
−0.03191(8)
0.60999(7)
1
0.0221(3)
HO6
  0.120(3)
−0.0138(16)
0.6222(14)
1
0.05
O7
  0.08889(13)
  0.13801(9)
0.59158(9)
1
0.0357(4)
O8
  0.26816(12)
  0.19381(8)
0.63389(7)
1
0.0243(3)
O9
  0.22961(14)
−0.26485(9)
0.39752(9)
1
0.0348(4)
HO9
  0.203(3)
−0.3138(17)
0.3982(14)
1
0.05
C51
  0.17383(18)
 0.50529(11)
0.36479(10)
1
0.0247(4)
C52
  0.31671(18)
 0.48833(12)
0.35581(12)
1
0.0299(5)
H52A
  0.3411
 0.4469
0.3892
1
0.036
H52B
  0.3654
 0.5361
0.3686
1
0.036
C53
  0.36065(18)
 0.46262(12)
0.28366(12)
1
0.0288(5)
C54
  0.2995(2)
 0.51004(15)
0.22598(13)
1
0.0470(6)
H54A
  0.3131
 0.5659
0.2348
1
0.071
H54B
  0.2067
 0.4991
0.2242
1
0.071
H54C
  0.3392
 0.4958
0.1816
1
0.071
C55
  0.33695(18)
 0.37452(11)
0.26995(10)
1
0.0243(4)
O51
  0.13621(14)
 0.56592(9)
0.39014(9)
1
0.0361(4)
O52
  0.09277(13)
 0.45011(9)
0.34618(8)
1
0.0300(3)
HO52
  0.147(2)
 0.4107(15)
0.3218(14)
1
0.05
O53
  0.49802(14)
 0.47478(10)
0.28234(10)
1
0.0438(4)
HO53
  0.530(2)
 0.4274(17)
0.2667(14)
1
0.05
O54
  0.42729(14)
 0.33586(9)
0.24647(8)
1
0.0368(4)
O55
  0.22436(12)
 0.34821(8)
0.28413(7)
1
0.0261(3)

A. X-Ray Powder Diffraction

The sample was pure and well crystallised, with a peak width of 0.107° (2θ) at 16.992° (2θ). There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.8.3).

EXAMPLE 9: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN SUCCINATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial succinic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 158.1-160.0° C. (measured by DSC, see FIG. 3.8).

DSC Analysis (See FIG. 3.8)

1H NMR (400 MHz, Methanol-d4)* δ 6.77 (s, 1H), 6.71 (s, 1H), 6.07 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.31 (d, J=0.6 Hz, 1H), 4.12 (d, J=9.6 Hz, 1H), 3.79 (s, 3H), 3.54 (s, 3H), 2.49 (s, 4H), 2.22 (d, J=16.2 Hz, 1H), 1.93 (d, J=16.1 Hz, 2H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, D2O) δ 179.49, 174.22, 171.93, 162.89, 147.84, 146.75, 129.74, 125.23, 113.38, 111.12, 101.62, 95.53, 76.99, 75.26, 73.68, 71.33, 58.41, 52.95, 52.23, 51.27, 48.86, 47.58, 42.72, 42.55, 39.19, 38.77, 31.20, 27.59, 18.59, 17.69.

*APT=Attached Proton Test

IR (KBr, solid), cm−1 3571.1, 3375.3, 3083.4, 2964.4, 1755.4, 1736.7, 1661.8, 1575.5, 1504.8, 1489.7, 1375.0, 1346.3, 1326.1, 1267.2, 1227.1, 1188.3, 1151.7, 1083.4, 1034.7, 929.4, 859.4, 802.8, 758.1, 709.9, 658.9, 617.9, 561.2, 510.6. See FIG. 1.8

EXAMPLE 10: PREPARATION AND ANALYSES OF (3S,4S,5R,2′R)-HOMOHARRINGTONINE HYDROGEN ITACONATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial itaconic acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 178.3-181.2° C. (measured by DSC, see FIG. 3.9). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.9)

1H NMR (400 MHz, Methanol-d4)* δ 6.78 (s, 1H), 6.72 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 6.01 (d, J=1.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.51 (q, J=1.2 Hz, 1H), 5.32 (s, 1H), 4.14 (d, J=9.6 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.51-3.42 (m, 1H), 3.25-3.07 (m, 2H), 2.72-2.60 (m, 1H), 2.26-2.20 (m, 2H), 2.20-2.07 (m, 2H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.23 (d, J=10.6 Hz, 1H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD)** δ 125.11, 114.53, 111.47, 102.52, 96.09, 74.12, 58.66, 53.95, 53.18, 48.70, 44.48, 43.78, 41.66, 40.59, 40.44, 29.12, 28.94, 28.87, 19.70, 18.81.

**DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 3473.2, 2968.4, 2899.8, 2564.7, 1760.7, 1733.5, 1657.6, 1569.7, 1506.4, 1488.9, 1436.1, 1374.9, 1348.9, 1264.2, 1240.7, 1226.2, 1185, 1168.8, 1149.8, 1112.1, 1082.4, 1043.1, 1032.9, 1022.2, 982, 928.1, 890, 866.7, 819.8, 772.1, 722.1, 690.1, 616.7, 543. See FIG. 1.9

IR (ATR, film) cm−1 3458.8, 2967, 1741.5, 1654.8, 1576.7, 1505.2, 1489.3, 1464.3, 1373.4, 1223.8, 1167, 1083.1, 1033.3, 933.6, 563.4. See FIG. 1.9

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIGS. 2.9.1 and 2.9.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.39×0.22×0.1 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C34H45NO13
Extended formula
C29H40NO9, C5H5O4
Formula weight
 675.71
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 10.9895(4) Å, α = 90°
b = 16.1963(6) Å, β = 90°
c = 18.7277(5) Å, γ = 90°
Volume
3333.33(19) Å3
Z, Calculated density
4, 1.346 (g · cm−1)
Absorption coefficient
0.103 mm−1
F(000)
1440
Crystal size
0.39 × 0.22 × 0.1 mm
Crystal color
colourless
Theta range for data collection
3.12 to 27.48°
h_min, h_max
−11, 14
k_min, k_max
−13, 20
l_min, l_max
−16, 24
Reflections collected/unique
15962/4207 [aR(int) = 0.0449]
Reflections [I > 2σ]
3444
Completeness to theta_max
  0.986
Absorption correction type
multi-scan
Max. and min. transmission
  0.990, 0.844
Refinement method:
Full-matrix least-squares on F2
Data/restraints/parameters
4207/0/446
bGoodness-of-fit
  1.054
Final R indices [I > 2σ]
cR1 = 0.0411, dwR2 = 0.0914
R indices (all data)
cR1 = 0.0557, dwR2 = 0.0986
Largest diff. peak and hole
0.312 and −0.249 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.9.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
  0.4085(2)
0.94954(16)
0.28454(13)
1
0.0246(6)
H1
  0.3897
0.972
0.239
1
0.029
C2
  0.4040(2)
0.99163(16)
0.34531(13)
1
0.0239(5)
C3
  0.4399(2)
0.94237(16)
0.40941(12)
1
0.0206(5)
H3
  0.5169
0.9646
0.4305
1
0.025
C4
  0.4605(2)
0.85392(16)
0.38019(11)
1
0.0187(5)
H4
  0.548
0.8406
0.3893
1
0.022
C5
  0.4471(2)
0.86236(16)
0.29702(12)
1
0.0216(5)
C6
  0.5613(2)
0.83684(18)
0.25641(12)
1
0.0244(6)
H6A
  0.5945
0.7845
0.2755
1
0.029
H6B
  0.6247
0.8801
0.2599
1
0.029
C7
  0.5195(3)
0.8261(2)
0.17935(13)
1
0.0330(7)
H7A
  0.5696
0.7843
0.1544
1
0.04
H7B
  0.5244
0.879
0.153
1
0.04
C8
  0.3878(3)
0.7973(2)
0.18586(13)
1
0.0347(7)
H8A
  0.3332
0.8339
0.1582
1
0.042
H8B
  0.3791
0.7402
0.1675
1
0.042
N9
  0.35665(19)
0.80066(14)
0.26453(10)
1
0.0225(5)
H9
  0.3728
0.749
0.284
1
0.027
C10
  0.2240(2)
0.81867(19)
0.27555(14)
1
0.0293(6)
H10A
  0.1752
0.7717
0.2576
1
0.035
H10B
  0.2013
0.8683
0.2477
1
0.035
C11
  0.1946(2)
0.83313(19)
0.35427(13)
1
0.0280(6)
H11A
  0.2153
0.8908
0.3668
1
0.034
H11B
  0.1061
0.8258
0.3617
1
0.034
C12
  0.2625(2)
0.77534(17)
0.40351(12)
1
0.0218(5)
C13
  0.3876(2)
0.78580(16)
0.41518(12)
1
0.0197(5)
C14
  0.4503(2)
0.73128(16)
0.45992(12)
1
0.0226(5)
H14
  0.5349
0.7378
0.4685
1
0.027
C15
  0.3868(2)
0.66846(18)
0.49096(13)
1
0.0281(6)
C16
  0.2644(2)
0.65757(18)
0.47829(14)
1
0.0300(6)
C17
  0.1998(2)
0.70918(17)
0.43475(13)
1
0.0274(6)
H17
  0.1156
0.7006
0.426
1
0.033
C18
  0.3315(3)
0.5504(2)
0.5409(2)
1
0.0595(10)
H18A
  0.3503
0.5025
0.5101
1
0.071
H18B
  0.3207
0.5305
0.5905
1
0.071
C19
  0.3222(3)
1.11383(18)
0.29761(14)
1
0.0333(7)
H19A
  0.2562
1.0809
0.277
1
0.05
H19B
  0.3856
1.1225
0.2616
1
0.05
H19C
  0.2902
1.1674
0.3132
1
0.05
C21
  0.3633(2)
0.98532(16)
0.52334(12)
1
0.0193(5)
C22
  0.2491(2)
0.98238(16)
0.56983(12)
1
0.0210(5)
C23
  0.2120(2)
0.89286(16)
0.58578(12)
1
0.0225(5)
H23A
  0.1406
0.8932
0.618
1
0.027
H23B
  0.1873
0.8659
0.5406
1
0.027
C24
  0.3118(2)
0.84293(17)
0.61968(12)
1
0.0228(5)
C25
  0.3602(3)
0.7333(2)
0.69781(18)
1
0.0448(8)
H25A
  0.4231
0.7681
0.7195
1
0.067
H25B
  0.3973
0.6974
0.6618
1
0.067
H25C
  0.3218
0.6994
0.7348
1
0.067
C31
  0.1446(2)
1.02575(17)
0.53105(13)
1
0.0239(5)
H31A
  0.1214
0.9918
0.4892
1
0.029
H31B
  0.0735
1.0275
0.5635
1
0.029
C32
  0.1704(2)
1.11351(17)
0.50526(13)
1
0.0272(6)
H32A
  0.1946
1.1483
0.5463
1
0.033
H32B
  0.2387
1.1127
0.4708
1
0.033
C33
  0.0585(3)
1.1503(2)
0.46982(16)
1
0.0367(7)
H33A
−0.0106
1.1443
0.5033
1
0.044
H33B
  0.0395
1.1164
0.4272
1
0.044
C34
  0.0638(3)
1.2404(2)
0.44632(14)
1
0.0348(7)
C35
−0.0534(3)
1.2636(3)
0.4090(2)
1
0.0667(12)
H35A
−0.0642
1.2289
0.3667
1
0.1
H35B
−0.0499
1.3217
0.3946
1
0.1
H35C
−0.122
1.2554
0.4417
1
0.1
C36
  0.0885(3)
1.2991(2)
0.50777(16)
1
0.0518(9)
H36A
  0.0919
1.3558
0.4897
1
0.078
H36B
  0.1664
1.2849
0.5301
1
0.078
H36C
  0.0232
1.2944
0.5432
1
0.078
O1
  0.37336(17)
1.07063(11)
0.35827(9)
1
0.0295(4)
O2
  0.2228(2)
0.58991(14)
0.51681(12)
1
0.0481(6)
O3
  0.4284(2)
0.60914(13)
0.53788(11)
1
0.0427(5)
O4
  0.34267(14)
0.94422(11)
0.46170(8)
1
0.0201(4)
O5
  0.45495(15)
1.02085(12)
0.53858(9)
1
0.0266(4)
O6
  0.27352(16)
1.02392(12)
0.63524(9)
1
0.0251(4)
HO6
  0.342(3)
1.033(2)
0.6369(17)
1
0.05
O7
  0.41851(16)
0.85198(13)
0.60753(11)
1
0.0356(5)
O8
  0.26888(16)
0.78534(13)
0.66423(11)
1
0.0366(5)
O9
  0.1644(2)
1.24749(16)
0.39741(12)
1
0.0513(6)
HO9
  0.160(3)
1.307(2)
0.3826(17)
1
0.05
C51
  0.1037(3)
0.4553(2)
0.31090(15)
1
0.0388(7)
C52
  0.1159(3)
0.5480(2)
0.3010(2)
1
0.0512(9)
H52A
  0.0462
0.5679
0.2723
1
0.061
H52B
  0.1112
0.5749
0.3484
1
0.061
C53
  0.2325(3)
0.57416(19)
0.26485(16)
1
0.0403(8)
C54
  0.3464(3)
0.57891(18)
0.30905(13)
1
0.0285(6)
C55
  0.2404(5)
0.5906(2)
0.19500(19)
1
0.0747(14)
H55A
  0.3166
0.6049
0.1745
1
0.09
H55B
  0.1697
0.5881
0.1659
1
0.09
O51
  0.00971(18)
0.41958(16)
0.29455(13)
1
0.0529(6)
O52
  0.19701(19)
0.41745(13)
0.33812(11)
1
0.0377(5)
HO52
  0.262(3)
0.454(2)
0.3511(17)
1
0.05
O53
  0.41850(17)
0.63675(12)
0.30044(10)
1
0.0344(5)
O54
  0.36137(17)
0.52002(13)
0.35372(10)
1
0.0346(5)

EXAMPLE 11: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN FUMARATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial fumaric acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 103.5-107.2° C. (measured by DSC, see FIG. 3.10).

DSC Analysis (See FIG. 3.10)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.74 (s, 1H), 6.65 (s, 2H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.43-3.32 (m, 2H), 3.24-3.10 (m, 1H), 2.75-2.61 (m, 1H), 2.30-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.47-1.30 (m, 5H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘watergate” irradiation

13C NMR (101 MHz, MeOD)** δ 135.91, 114.59, 111.56, 102.57, 95.74, 74.03, 58.74, 53.89, 52.92, 51.79, 49.56, 48.62, 44.47, 43.77, 40.59, 40.16, 28.94, 28.90, 28.88, 19.64, 18.81.

**DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (ATR, solid), cm−1 3607.9, 3212.6, 2955.6, 1980.4, 1777.4, 1731.4, 1708.1, 1653.6, 1584.3, 1505.9, 1488.6, 1440.0, 1372.4, 1338.6, 1292.0, 1251.1, 1221.1, 1173.3, 1150.9, 1119.3, 1088.7, 1034.0, 982.0, 934.1, 903.3, 839.6, 790.3, 761.8, 646.0, 613.5, 563.6, 510.2. See FIG. 1.10

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.119° (2θ) at 19.564° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).

EXAMPLE 12: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN TARTRONATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial tartronic acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 163.1-167.6° C. (measured by DSC, see FIG. 3.11).

DSC Analysis (See FIG. 3.11)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.94 (d, J=0.9 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.54 (s, 3H), 2.69 (m, 1H), 2.22 (m, 4H), 2.04-1.91 (m, 2H), 1.47-1.29 (m, 5H), 1.23 (m, 1H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate” irradiation

13C NMR (101 MHz, MeOD)** δ 114.60, 111.55, 102.61, 95.67, 74.02, 58.77, 53.94, 52.86, 51.79, 48.67, 44.47, 43.77, 40.59, 40.10, 28.94, 28.88, 28.84, 19.63, 18.80.

**DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 3451, 2969, 2898, 2051, 1763, 1730, 1657, 1507, 1490, 1467, 1437, 1376, 1352, 1316, 1294, 1266, 1228, 1208, 1186, 1148, 1126, 1083, 1032, 1002, 985, 943, 927, 891, 866, 802, 753, 720, 690, 675, 652, 614, 563, 510, 477. See FIG. 1.11

IR (Diamond ATR, film) cm−1 3429, 2965, 1744, 1655, 1505, 1489, 1440, 1374, 1266, 1224, 1165, 1084, 1033, 928, 807, 615. See FIG. 1.11

EXAMPLE 13: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE HYDROGEN MALONATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol-d4, then isolated as a white prismatic solid mp 127.0-131.9° C. (measured by DSC, see FIG. 3.12).

DSC Analysis (See FIG. 3.12)

1H NMR (400 MHz, Methanol-d4)* δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.24-3.17 (m, 1H), 2.74-2.64 (m, 1H), 2.30-2.09 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.30 (m, 5H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘Watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 174.83, 174.22, 171.62, 165.26, 149.82, 148.81, 130.79, 126.75, 114.88, 111.83, 102.90, 95.90, 78.32, 76.09, 74.30, 71.27, 59.04, 54.21, 53.18, 52.07, 48.94, 44.75, 44.05, 40.87, 40.42, 29.22, 29.17, 29.14, 19.91, 19.09. See FIG. 1.12

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3453.1, 2967.5, 2933.2, 2899.3, 1765.0, 1735.2, 1654.6, 1505.9, 1489.1, 1463.7, 1439.1, 1374.9, 1349.7, 1292.0, 1266.2, 1226.5, 1207.5, 1148.4, 1083.3, 1060.6, 1032.3, 1002.1, 985.4, 944.1, 925.5, 891.0, 858.5, 830.6, 797.6, 756.7, 721.5, 710.8, 690.8, 615.1, 565.1, 510.8, 498.3, 489.9, 478.9, 472.8. See FIG. 1.12

EXAMPLE 14: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE DIHYDROGEN CITRATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial citric acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 170.35-173.9° C. (measured by DSC, see FIG. 3.13). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.13)

1H NMR (400 MHz, Methanol-d4)* δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (s, 1H), 5.94 (s, 1H), 5.33 (s, 1H), 4.17 (d, J=9.7 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 2.79 (d, J=15.4 Hz, 2H), 2.71 (d, J=15.4 Hz, 2+1H), 2.23 (d, J=16.2 Hz, 1H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.17 (m, 6H), 1.15 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT*(101 MHz, Methanol-d4) δ 179.22, 174.90, 174.22, 171.61, 165.22, 149.83, 148.81, 130.80, 126.75, 114.89, 111.84, 102.89, 95.97, 78.30, 76.09, 74.33, 74.01, 71.29, 59.05, 54.23, 53.21, 52.07, 48.95, 44.76, 44.06, 40.88, 40.44, 29.22, 29.18, 29.16, 19.92, 19.10.

*APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 2959, 1757, 1732, 1715, 1651, 1580, 1508, 1489, 1464, 1432, 1371, 1305, 1262, 1224, 1186, 1151, 1111, 1081, 1032, 985, 944, 922, 909, 864, 829, 806, 705, 690, 614, 581, 563, 510, 486. See FIG. 1.13

IR (Diamond ATR, film) cm−1 3442, 2967, 1738, 1654, 1585, 1505, 1489, 1440, 1373, 1264, 1223, 1115, 1083, 1033, 928. See FIG. 1.13

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIGS. 2.11.1 and 2.11.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.36×0.28 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C36H51NO17
Extended formula
C29H40NO9, C6H7O7, CH4O
Formula weight
 769.78
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
orthorhombic, P 21 21 21
Unit cell dimensions
a = 9.9967(3) Å, α = 90°
b = 18.8971(5) Å, β = 90°
c = 19.2826(7) Å, γ = 90°
Volume
3642.6(2) Å3
Z, Calculated density
4, 1.404 (g · cm−1)
Absorption coefficient
0.112 mm−1
F(000)
1640
Crystal size
0.58 × 0.36 × 0.28 mm
Crystal color
colourless
Theta range for data collection
2.94 to 27.48°
h_min, h_max
−12, 12
k_min, k_max
−20, 24
l_min, l_max
−25, 13
Reflections collected/unique
18037/4637 [aR(int) = 0.0424]
Reflections [I > 2σ]
4165
Completeness to theta_max
  0.998
Absorption correction type
multi-scan
Max. and min. transmission
  0.969, 0.858
Refinement method
Full-matrix least-squares on F2
Data/restraints/parameters
4637/0/513
bGoodness-of-fit
  1.032
Final R indices [I > 2σ]
cR1 = 0.0367, dwR2 = 0.0851
R indices (all data)
cR1 = 0.0427, dwR2 = 0.0884
Largest diff. peak and hole
0.298 and −0.214 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.11.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
0.3491(2)
0.92951(11)
0.25699(11)
1
0.0149(4)
H1
0.3259
0.9482
0.2129
1
0.018
C2
0.3729(2)
0.96852(11)
0.31322(11)
1
0.0152(4)
C3
0.4025(2)
0.92636(11)
0.37724(10)
1
0.0138(4)
H3
0.4934
0.9384
0.3953
1
0.017
C4
0.3993(2)
0.84827(11)
0.35162(11)
1
0.0119(4)
H4
0.4942
0.8317
0.3535
1
0.014
C5
0.3638(2)
0.85222(11)
0.27257(11)
1
0.0136(4)
C6
0.4667(2)
0.81449(12)
0.22685(11)
1
0.0176(5)
H6A
0.4901
0.7677
0.2464
1
0.021
H6B
0.5492
0.8431
0.2224
1
0.021
C7
0.3972(3)
0.80632(13)
0.15620(12)
1
0.0220(5)
H7A
0.4181
0.8469
0.1256
1
0.026
H7B
0.4258
0.7621
0.133
1
0.026
C8
0.2475(3)
0.80407(12)
0.17319(11)
1
0.0212(5)
H8A
0.2
0.8437
0.1504
1
0.025
H8B
0.2075
0.7589
0.1575
1
0.025
N9
0.2393(2)
0.81069(9)
0.25106(9)
1
0.0141(4)
HN9
0.251(4)
0.7629(18)
0.2669(17)
1
0.05
C10
0.1057(2)
0.83634(12)
0.27463(11)
1
0.0172(5)
H10A
0.0365
0.8014
0.2612
1
0.021
H10B
0.0848
0.8815
0.251
1
0.021
C11
0.1006(2)
0.84755(11)
0.35335(11)
1
0.0144(4)
H11A
0.1348
0.8955
0.364
1
0.017
H11B
0.0062
0.8455
0.3686
1
0.017
C12
0.1806(2)
0.79388(11)
0.39455(11)
1
0.0130(4)
C13
0.3209(2)
0.79563(10)
0.39455(11)
1
0.0118(4)
C14
0.3947(2)
0.74640(11)
0.43291(11)
1
0.0141(4)
H14
0.4897
0.7472
0.433
1
0.017
C15
0.3252(2)
0.69701(11)
0.47031(11)
1
0.0153(4)
C16
0.1875(2)
0.69386(11)
0.46951(11)
1
0.0153(4)
C17
0.1124(2)
0.74148(11)
0.43253(11)
1
0.0159(4)
H17
0.0174
0.7392
0.4325
1
0.019
C18
0.2626(2)
0.59964(11)
0.52687(12)
1
0.0212(5)
H18A
0.2671
0.5574
0.4966
1
0.025
H18B
0.2624
0.5837
0.5758
1
0.025
C19
0.3571(3)
1.07978(12)
0.25888(13)
1
0.0270(6)
H19A
0.2638
1.0737
0.2445
1
0.041
H19B
0.4165
1.0631
0.2219
1
0.041
H19C
0.3746
1.13
0.2679
1
0.041
C21
0.3353(2)
0.98104(10)
0.48356(11)
1
0.0126(4)
C22
0.2160(2)
0.99292(11)
0.53183(11)
1
0.0140(4)
C23
0.1479(2)
0.92348(11)
0.55222(11)
1
0.0162(4)
H23A
0.0747
0.9336
0.5854
1
0.019
H23B
0.1079
0.9015
0.5105
1
0.019
C24
0.2446(2)
0.87236(11)
0.58470(11)
1
0.0160(4)
C25
0.2645(3)
0.77137(12)
0.65633(13)
1
0.0259(5)
H25A
0.3417
0.7932
0.6792
1
0.039
H25B
0.2957
0.7397
0.6195
1
0.039
H25C
0.2129
0.7442
0.6904
1
0.039
C31
0.1157(2)
1.04230(11)
0.49544(12)
1
0.0172(5)
H31A
0.0748
1.0168
0.4559
1
0.021
H31B
0.0433
1.0545
0.5284
1
0.021
C32
0.1792(2)
1.11061(11)
0.46873(12)
1
0.0195(5)
H32A
0.2259
1.1006
0.4245
1
0.023
H32B
0.247
1.1269
0.5026
1
0.023
C33
0.0774(2)
1.16973(11)
0.45699(13)
1
0.0185(5)
33A
0.0362
1.1819
0.5021
1
0.022
H33B
0.0055
1.1515
0.4265
1
0.022
C34
0.1343(2)
1.23774(11)
0.42451(12)
1
0.0177(5)
C35
0.1490(3)
1.23004(14)
0.34612(13)
1
0.0286(6)
H35A
0.1813
1.2747
0.3264
1
0.043
H35B
0.062
1.2182
0.3257
1
0.043
H35C
0.2132
1.1923
0.3358
1
0.043
C36
0.2649(3)
1.26062(13)
0.45770(15)
1
0.0279(6)
H36A
0.2555
1.26
0.5083
1
0.042
H36B
0.2874
1.3086
0.4423
1
0.042
H36C
0.3363
1.228
0.4439
1
0.042
O1
0.38145(18)
1.03942(8)
0.32111(8)
1
0.0215(4)
O2
0.14401(17)
0.63966(8)
0.51222(8)
1
0.0216(4)
O3
0.37524(16)
0.64530(8)
0.51409(8)
1
0.0188(3)
O4
0.30170(15)
0.93996(7)
0.42992(8)
1
0.0145(3)
O5
0.44249(16)
1.00917(8)
0.49151(8)
1
0.0177(3)
O6
0.26234(18)
1.02640(8)
0.59345(8)
1
0.0185(3)
HO6
0.345(4)
1.0383(18)
0.5906(18)
1
0.05
O7
0.36240(17)
0.87121(9)
0.57473(9)
1
0.0269(4)
O8
0.18077(17)
0.82599(8)
0.62673(8)
1
0.0204(4)
O9
0.03435(17)
1.29295(8)
0.43436(9)
1
0.0194(4)
HO9
0.039(4)
1.3068(17)
0.4747(18)
1
0.047
C51
0.2081(2)
0.62031(12)
0.26814(12)
1
0.0197(5)
C52
0.2431(2)
0.55356(11)
0.31079(11)
1
0.0165(4)
C53
0.1183(2)
0.53099(11)
0.35211(12)
1
0.0196(5)
H53A
0.1
0.5667
0.3885
1
0.023
H53B
0.0402
0.5298
0.3205
1
0.023
C54
0.1343(2)
0.45913(12)
0.38583(12)
1
0.0215(5)
O51
0.2755(2)
0.67426(8)
0.28230(9)
1
0.0293(4)
O52
0.11948(19)
0.61575(9)
0.22240(10)
1
0.0300(4)
O53
0.34983(17)
0.57012(9)
0.35660(9)
1
0.0221(4)
HO53
0.358(4)
0.6160(18)
0.3535(18)
1
0.05
O54
0.2279(2)
0.44156(10)
0.42120(12)
1
0.0433(6)
O55
0.03274(18)
0.41626(9)
0.37134(8)
1
0.0204(4)
HO55
0.044(4)
0.3790(18)
0.3902(18)
1
0.05
C60
0.2959(2)
0.49411(12)
0.26327(12)
1
0.0204(5)
H60A
0.3642
0.5153
0.2324
1
0.025
H60B
0.3427
0.4594
0.2931
1
0.025
C61
0.1992(3)
0.45307(13)
0.21778(13)
1
0.0251(5)
O62
0.0989(2)
0.48721(10)
0.18875(10)
1
0.0344(5)
HO62
0.104(3)
0.5364(18)
0.2012(18)
1
0.05
O63
0.2167(2)
0.39075(9)
0.20666(11)
1
0.0381(5)
O71
0.5434(2)
1.13984(10)
0.43673(10)
1
0.0321(4)
HO71
0.498(4)
1.1011(18)
0.4527(18)
1
0.05
C72
0.6645(3)
1.11097(17)
0.41010(17)
1
0.0443(8)
H72A
0.6436
1.0742
0.376
1
0.066
H72B
0.7165
1.0903
0.4481
1
0.066
H72C
0.7167
1.1485
0.3879
1
0.066

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.127° (2θ) at 18.255° (2θ). The powder is constituted in major part by the expected sample referenced HOCIT 5776. However, the powder pattern reveals the presence of a second phase, with significant lines at 7.001° (2θ) and 12.317° (2θ) for example, not calculated from the structure determined with a single crystal (for view of diagrams and experimental details, see FIG. 2.11.3).

EXAMPLE 15: PREPARATION AND ANALYSES OF HOMOHARRINGTONINE SALICYLATE

This ionic compound was obtained from commercial homoharringtonine (batch #51H0092) mixed with commercial salicylic acid (batch #) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 148.7-151.3° C. (measured by DSC, see FIG. 3.14). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.14)

1H NMR (400 MHz, Methanol-d4)* δ 7.80 (dd, J=7.7, 1.7 Hz, 1H), 7.26 (ddd, J=8.8, 7.2, 1.8 Hz, 1H), 6.80-6.70 (m, 4H), 6.09 (d, J=9.6 Hz, 1H), 5.92 (d, J=1.0 Hz, 1H), 5.88 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.18 (dd, J=11.0, 6.9 Hz, 1H), 2.71-2.62 (m, 1H), 2.28-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 1H), 1.47-1.30 (m, 5H), 1.30-1.18 (m, 1H), 1.16 (s, 6H).

*Partial presuppression of water signal using ‘watergate’ irradiation.

13C NMR (101 MHz, MeOD)** δ 133.50, 131.36, 118.66, 116.85, 114.49, 111.46, 102.48, 95.80, 74.04, 58.71, 53.86, 52.96, 51.78, 49.56, 48.62, 44.45, 43.75, 40.58, 40.24, 28.96, 28.94, 28.86, 19.65, 18.79.

**DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 2961.4, 2622.5, 1760.5, 1748, 1740.7, 1722.8, 1651.8, 1625.2, 1590.4, 1579.2, 1503.9, 1487.7, 1459.3, 1374, 1334.4, 1293.2, 1224.3, 1167.4, 1082.6, 1043.9, 1030.5, 995.4, 924.5, 890.7, 857.3, 832.8, 805.3, 763.6, 704.8, 666.2, 613.2, 565.6. See FIG. 1.14

IR (Diamond ATR, film) cm−1 3416.8, 2962.9, 2377.4, 2156.9, 1746.7, 1655.2, 1628.2, 1591.3, 1504.8, 1488.2, 1459.5, 1375.8, 1330.2, 1223.6, 1084.2, 1034.5, 930.1, 858.3, 807.3, 763.1, 705.4. See FIG. 1.14

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIGS. 2.12.1 to 2.12.4)

From a suspension in its mother liquor, a small single crystal of size 0.15×0.11×0.04 mm was finally selected and implemented on the diffractometer.


Structural data
Empirical formula
C72H94N2O26
Extended formula
2(C29H40NO9), 2(C7H5O3), 2(H2O)
Formula weight
1403.5
Temperature
150(2) K
Wavelength
0.71073 Å
Crystal system, space group
monoclinic, P 21
Unit cell dimensions
a = 11.6871(3) Å, α = 90°
b = 25.8294(6) Å, β = 114.6320(10)°
c = 12.6300(3) Å, γ = 90°
Volume
3465.69(15) Å3
Z, Calculated density
2, 1.345 (g · cm−1)
Absorption coefficient
0.102 mm−1
F(000)
1496
Crystal size
0.15 × 0.11 × 0.04 mm
Crystal color
colourless
Theta range for data collection
2.96 to 27.48°
h_min, h_max
−15, 15
k_min, k_max
−33, 33
l_min, l_max
−11, 16
Reflections collected/unique
29505/8078 [aR(int) = 0.0621]
Reflections [I > 2σ]
6299
Completeness to theta_max
  0.994
Absorption correction type
multi-scan
Max. and min. transmission
  0.996, 0.886
Refinement method:
Full-matrix least-squares on F2
Data/restraints/parameters
8078/1/928
bGoodness-of-fit
  1.076
Final R indices [I > 2σ]
cR1 = 0.0619, dwR2 = 0.121
R indices (all data)
cR1 = 0.086, dwR2 = 0.1312
Largest diff. peak and hole
0.531 and −0.3 e ·Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.12.1 corresponds to below table.


Atom
x
y
z
occ.
U(eq)
C1
−0.3818(4)
  0.00999(17)
  0.1577(4)
1
0.0196(9)
H1
−0.3779
−0.0157
  0.1054
1
0.024
C2
−0.3310(4)
  0.00487(17)
  0.2729(4)
1
0.0193(9)
C3
−0.3588(4)
  0.04946(17)
  0.3333(4)
1
0.0186(9)
H3
−0.4173
  0.038
  0.3682
1
0.022
C4
−0.4266(4)
  0.08958(17)
  0.2350(4)
1
0.0172(9)
H4
−0.5126
  0.0945
  0.2325
1
0.021
C5
−0.4453(4)
  0.06061(18)
  0.1208(4)
1
0.0183(9)
C6
−0.5832(4)
  0.0587(2)
  0.0314(4)
1
0.0298(11
H6A
−0.627
  0.0292
  0.0483
1
0.036
H6B
−0.6271
  0.091
  0.0347
1
0.036
C7
−0.5836(6)
  0.0525(3)
−0.0867(5)
1
0.0523(19
H7A
−0.6431
  0.0772
−0.1428
1
0.063
H7B
−0.6082
  0.0169
−0.1162
1
0.063
C8
−0.4507(5)
  0.0637(2)
−0.0699(4)
1
0.0287(11
H8A
−0.4066
  0.0313
−0.0719
1
0.034
H8B
−0.4502
  0.0871
−0.1318
1
0.034
N9
−0.3883(4)
  0.08909(15)
  0.0468(3)
1
0.0179(8)
HN9
−0.406(6)
  0.119(3)
  0.038(6)
1
0.0
C10
−0.2485(4)
  0.08986(18)
  0.0908(4)
1
0.0211(10
H10A
−0.2248
  0.1127
  0.0402
1
0.025
H10B
−0.2186
  0.0545
  0.0856
1
0.025
C11
−0.1831(4)
  0.10881(17)
  0.2165(4)
1
0.0176(9)
H11A
−0.1748
  0.0794
  0.2696
1
0.021
H11B
−0.0973
  0.1207
  0.2312
1
0.021
C12
−0.2525(4)
  0.15248(17)
  0.2444(4)
1
0.0165(9)
C13
−0.3674(4)
  0.14288(17)
  0.2526(4)
1
0.0151(9)
C14
−0.4317(4)
  0.18343(17)
  0.2773(4)
1
0.0167(9)
H14
−0.5087
  0.1775
  0.2838
1
0.0
C15
−0.3799(4)
  0.23192(17)
  0.2919(4)
1
0.0181(9)
C16
−0.2683(4)
  0.24154(17)
  0.2810(4)
1
0.0179(9)
C17
−0.2022(4)
  0.20246(17)
  0.2595(4)
1
0.0175(9)
H17
−0.1243
  0.209
  0.2551
1
0.021
C18
−0.3495(5)
  0.3174(2)
  0.2989(6)
1
0.0342(13
H18A
−0.3276
  0.3447
  0.3591
1
0.041
H18B
−0.3985
  0.3333
  0.2218
1
0.041
C19
−0.2286(5)
−0.07362(19)
  0.2749(5)
1
0.0287(11
H19A
−0.3051
−0.09
  0.218
1
0.043
H19B
−0.1753
−0.0999
  0.329
1
0.043
H19C
−0.1826
−0.0574
  0.2342
1
0.043
C21
−0.2376(4)
  0.07232(16)
  0.5324(4)
1
0.0150(9)
C22
−0.1193(4)
  0.10173(17)
  0.6134(4)
1
0.0181(9)
C23
−0.1290(4)
  0.15962(16)
  0.5815(4)
1
0.0210(10
H23A
−0.0436
  0.1748
  0.6184
1
0.025
H23B
−0.1574
  0.1625
  0.4961
1
0.025
C24
−0.2154(4)
  0.19169(17)
  0.6156(4)
1
0.0191(9)
C25
−0.4265(5)
  0.2160(2)
  0.5670(5)
1
0.0293(12
H25A
−0.4225
  0.2098
  0.645
1
0.044
H25B
−0.5115
  0.2084
  0.5085
1
0.044
H25C
−0.4059
  0.2523
  0.5602
1
0.044
C31
−0.0033(4)
  0.07965(17)
  0.6007(4)
1
0.0186(9)
H31A
−0.0119
  0.0866
  0.5206
1
0.022
H31B
  0.0725
  0.0983
  0.6551
1
0.022
C32
  0.0168(4)
  0.02207(17)
  0.6244(4)
1
0.0219(10
H32A
−0.059
  0.003
  0.5716
1
0.026
H32B
  0.0297
  0.0148
  0.7056
1
0.026
C33
  0.1312(4)
  0.00353(17)
  0.6058(4)
1
0.0203(10)
H33A
  0.2055
  0.0237
  0.6578
1
0.024
H33B
  0.117
  0.0115
  0.5246
1
0.024
C34
  0.1622(4)
−0.05425(18)
  0.6277(4)
1
0.0224(10)
C35
  0.0526(5)
−0.0876(2)
  0.5504(5)
1
0.0333(12)
H35A
  0.0218
−0.0755
  0.4698
1
0.05
H35B
  −0.0153
−0.0853
  0.5766
1
0.05
H35C
  0.0803
−0.1237
  0.555
1
0.05
C36
  0.2022(6)
−0.0690(2)
  0.7544(5)
1
0.0418(14)
H36A
  0.2289
−0.1053
  0.7657
1
0.063
H36B
  0.1312
−0.0643
  0.7756
1
0.063
H36C
  0.2724
−0.0469
  0.8038
1
0.063
O1
−0.2627(3)
−0.03428(12)
  0.3396(3)
1
0.0245(7)
O2
−0.4215(3)
  0.27736(13)
  0.3215(3)
1
0.0295(8)
O3
−0.2371(3)
  0.29334(12)
  0.3015(3)
1
0.0291(8)
O4
−0.2456(3)
  0.07096(12)
  0.4237(3)
1
0.0193(7)
O5
−0.3115(3)
  0.05224(13)
  0.5638(3)
1
0.0272(8)
O6
−0.1014(3)
  0.09442(13)
  0.7304(3)
1
0.0232(7)
HO6
−0.159(6)
  0.100(3)
  0.736(6)
1
0.05
O7
−0.1806(3)
  0.22291(14)
  0.6937(3)
1
0.0343(9)
O8
−0.3364(3)
  0.18247(12)
  0.5481(3)
1
0.0231(7)
O9
  0.2605(3)
−0.06667(14)
  0.5922(4)
1
0.0349(9)
HO9
  0.319(6)
−0.049(3)
  0.633(6)
1
0.05
C41
−0.4061(4)
  0.20979(18)
−0.0709(4)
1
0.0185(9)
C42
−0.4133(4)
  0.26758(17)
−0.0845(4)
1
0.0190(9)
C43
−0.4734(4)
  0.29825(18)
−0.0317(4)
1
0.0236(10)
C44
−0.4734(5)
  0.3520(2)
−0.0387(5)
1
0.0348(13)
H44
−0.5137
  0.3723
−0.0014
1
0.042
C45
−0.4139(5)
  0.3755(2)
−0.1008(5)
1
0.0361(13)
H45
−0.4138
  0.4122
−0.106
1
0.043
C46
−0.3542(5)
  0.3463(2)
−0.1557(5)
1
0.0320(12)
H46
−0.3132
  0.3627
−0.1977
1
0.038
C47
−0.3558(4)
  0.2929(2)
−0.1480(4)
1
0.0252(11)
H47
−0.3169
  0.2728
−0.1868
1
0.03
O41
−0.3392(3)
  0.18505(13)
−0.1087(3)
1
0.0267(8)
O42
−0.4676(3)
  0.18943(12)
−0.0187(3)
1
0.0218(7)
O43
−0.5327(4)
  0.27633(14)
  0.0297(4)
1
0.0331(9)
HO43
−0.525(6)
  0.249(3)
  0.031(6)
1
0.05
C51
  0.0847(4)
  0.26596(17)
−0.0909(4)
1
0.0198(10)
H51
  0.0267
  0.2505
−0.161
1
0.024
C52
  0.1215(4)
  0.31517(18)
−0.0810(4)
1
0.0200(10)
C53
  0.2190(4)
  0.32915(16)
  0.0374(4)
1
0.0164(9)
H53
  0.3014
  0.3357
  0.0333
1
0.02
C54
  0.2289(4)
  0.27955(16)
  0.1123(4)
1
0.0136(9)
H54
  0.3181
  0.2674
  0.1417
1
0.016
C55
  0.1468(4)
  0.23828(16)
  0.0226(4)
1
0.0142(8)
C56
  0.2210(4)
  0.18952(17)
  0.0199(4)
1
0.0199(9)
H56A
  0.2763
  0.1964
−0.0202
1
0.024
H56B
  0.2728
  0.1769
  0.0997
1
0.024
C57
  0.1175(4)
  0.15039(18)
−0.0484(4)
1
0.0243(10)
H57A
  0.0894
  0.1551
−0.1334
1
0.029
H57B
  0.148
  0.1144
−0.0276
1
0.029
C58
  0.0111(4)
  0.16215(17)
−0.0123(4)
1
0.0216(10)
H58A
  0.0026
  0.134
  0.0371
1
0.026
H58B
−0.0697
  0.166
−0.0817
1
0.026
N59
0.0475(3)
  0.21301(14)
  0.0560(3)
1
0.0161(8)
HN59
0.088(5)
  0.199(2)
  0.139(5)
1
0.05
C60
−0.0649(4)
  0.24526(18)
  0.0388(4)
1
0.0199(10)
H60A
−0.1166
  0.2267
  0.0718
1
0.024
H60B
−0.1165
  0.2495
−0.0458
1
0.024
C61
−0.0319(4)
  0.29898(18)
  0.0951(4)
1
0.0188(9)
H61A
−0.0155
  0.3225
  0.0412
1
0.023
H61B
−0.1057
  0.3126
  0.1056
1
0.023
C62
  0.0809(4)
  0.29972(16)
  0.2115(4)
1
0.0143(9)
C63
  0.2020(4)
  0.28854(16)
  0.2193(4)
1
0.0135(8)
C64
  0.3049(4)
  0.28691(17)
  0.3276(4)
1
0.0156(9)
H64
  0.3865
  0.2784
  0.3338
1
0.019
C65
  0.2853(4)
  0.29777(17)
  0.4240(4)
1
0.0179(9)
C66
  0.1677(4)
  0.31120(17)
  0.4167(4)
1
0.0197(10)
C67
  0.0638(4)
  0.31097(16)
  0.3130(4)
1
0.0188(9)
H67
−0.0174
  0.3182
  0.3094
1
0.023
C68
  0.3079(5)
  0.3226(2)
  0.6008(4)
1
0.0320(12)
H68A
  0.3372
  0.3589
  0.6181
1
0.038
H68B
  0.3258
  0.3046
  0.6753
1
0.038
C69
−0.0155(6)
  0.3400(2)
−0.2692(5)
1
0.0428(15)
H69A
  0.014
  0.314
−0.3086
1
0.064
H69B
−0.0446
  0.3707
−0.3186
1
0.064
H69C
−0.0852
  0.3256
−0.2545
1
0.064
C71
  0.2427(4)
  0.41910(16)
  0.0877(4)
1
0.0159(9)
C72
  0.2104(5)
  0.45689(17)
  0.1661(5)
1
0.0244(11)
C73
  0.2446(5)
  0.4339(2)
  0.2868(4)
1
0.0288(11)
H73A
  0.2371
  0.4613
  0.3385
1
0.035
H73B
  0.1834
  0.4063
  0.2808
1
0.035
C74
  0.3766(5)
  0.4115(2)
  0.3417(4)
1
0.0286(11)
C75
  0.5447(5)
  0.3850(3)
  0.5159(5)
1
0.0448(15)
H75A
  0.5447
  0.3514
  0.4801
1
0.067
H75B
  0.5651
  0.3802
  0.5988
1
0.067
H75C
  0.6078
  0.4076
  0.5075
1
0.067
C81
  0.0688(5)
  0.46846(19)
  0.1066(5)
1
0.0297(12)
H81A
  0.0225
  0.4358
  0.1018
1
0.036
H81B
  0.0477
  0.4926
  0.1566
1
0.036
C82
  0.0219(5)
  0.4915(2)
−0.0146(5)
1
0.0379(14)
H82A
  0.0717
  0.477
−0.0546
1
0.045
H82B
  0.0364
  0.5294
−0.0077
1
0.045
C83
−0.1172(5)
  0.4814(2)
−0.0889(5)
1
0.0378(13)
H83A
−0.1271
  0.4443
−0.111
1
0.045
H83B
−0.1636
  0.4874
−0.0399
1
0.045
C84
−0.1788(5)
  0.5126(2)
−0.1973(5)
1
0.0353(13)
C85
−0.3125(6)
  0.4957(3)
−0.2704(6)
1
0.0532(17)
H85A
−0.3601
  0.4953
−0.2222
1
0.08
H85B
−0.3123
  0.4609
−0.3012
1
0.08
H85C
−0.352
  0.52
−0.3352
1
0.08
C86
−0.1053(6)
  0.5173(3)
−0.2700(5)
1
0.0439(15)
H86A
−0.1535
  0.5378
−0.3398
1
0.066
H86B
−0.0895
  0.4828
−0.2931
1
0.066
H86C
−0.0248
  0.5345
−0.2246
1
0.066
O51
  0.0848(3)
  0.35381(13)
−0.1615(3)
1
0.0285(8)
O52
  0.3708(3)
  0.29717(14)
  0.5395(3)
1
0.0264(8)
O53
  0.1754(3)
  0.32134(13)
  0.5276(3)
1
0.0260(7)
O54
  0.1836(3)
  0.37380(11)
  0.0855(3)
1
0.0184(7)
O55
  0.3039(3)
  0.42839(12)
  0.0351(3)
1
0.0225(7)
O56
  0.2839(4)
  0.50176(14)
  0.1739(4)
1
0.0364(9)
HO56
  0.272(6)
  0.531(3)
  0.200(6)
1
0.05
O57
  0.4356(3)
  0.39631(15)
  0.2885(3)
1
0.0382(9)
O58
  0.4187(4)
  0.40908(16)
  0.4575(3)
1
0.0409(10)
O59
−0.1879(4)
  0.56408(15)
−0.1531(4)
1
0.0467(10)
H59
−0.2274
  0.5839
−0.2093
1
0.07
C91
  0.2069(5)
  0.15694(19)
  0.3512(5)
1
0.0274(11)
C92
  0.2274(4)
  0.16464(17)
  0.4767(4)
1
0.0223(10)
C93
  0.1463(3)
  0.19621(14)
  0.5016(3)
1
0.0268(11)
H93
  0.0736
  0.2099
  0.4399
1
0.032
C94
  0.1706(3)
  0.20812(14)
  0.6171(3)
1
0.0321(12)
H94
  0.1166
  0.2309
  0.6341
1
0.039
C95
  0.2751(5)
  0.1862(2)
  0.7069(5)
1
0.0376(13)
H95
  0.2916
  0.1937
  0.7856
1
0.045
C96
  0.3549(5)
  0.1536(2)
  0.6824(5)
1
0.0340(13)
H96
  0.4255
  0.1386
  0.7441
1
0.041
C97
  0.3320(5)
  0.1430(2)
  0.5688(5)
1
0.0286(11)
O91
  0.1084(3)
  0.17337(13)
  0.2713(3)
1
0.0265(8)
O92
  0.2952(4)
  0.13363(15)
  0.3347(3)
1
0.0370(9)
O93
  0.4150(3)
  0.11174(15)
  0.5479(4)
1
0.0363(9)
HO93
  0.369(6)
  0.114(3)
  0.462(6)
1
0.05
OW1
  0.4458(4)
  0.01162(15)
  0.6698(4)
1
0.0458(10)
OW2
  0.6810(3)
  0.11024(14)
  0.7538(3)
1
0.0318(8)

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Cephalotaxus esters, methods of synthesis, and uses thereof SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH,GIN, DAVID,WILMOT, JEREMY,DJABALLAH, HAKIM 03 March 2009 10 December 2009
Cephalotaxane derivatives and their processes of preparation and purification TEVA PHARMACEUTICALS INTERNATIONAL GMBH 25 May 2006 19 October 2006
Cephalotaxane derivatives and their processes of preparation and purification TEVA PHARMACEUTICALS INTERNATIONAL GMBH 25 May 2006 30 November 2010
Therapeutical method involving subcutaneous administration of drugs containing cephalotaxine derivatives ONCOPHARM CORPORATION 11 March 2002 26 September 2002
Highly purified and crystalline form of harringtonine ONCOPHARM CORPORATION,ROBIN, JEAN-PIERRE,BLANCHARD, JULIE,DHAL, ROBERT,MARIE, JEAN-PIERRE 21 March 2002 26 September 2002
See full citation <>

More like this

Title Current Assignee Application Date Publication Date
Pentacyclic pyridone compounds as antivirals NOVARTIS AG 07 June 2017 21 December 2017
Process for production of piperidine derivatives AMRI BOTHELL RESEARCH CENTER, INC.,ALBANY MOLECULAR RESEARCH, INC.,AMRI BURLINGTON, INC.,AMRI RENESSELAER, INC. 15 September 2006 16 March 2010
Benzo[b]chromeno-naphthyridin-7-one and pyrano[2',3'.7,8] quino[2,3-b]quinoxalin-7-one compounds ,process for their preparation and pharmaceutical compositions containing them LES LABORATOIRES SERVIER 03 February 2005 30 November 2005
A method for the preparation, isolation and purification of pharmaceutically applicable forms of ahu-377 ZENTIVA, K.S. 11 November 2015 19 May 2016
Process for the preparation of SGLT inhibitor compounds INDOCO REMEDIES LIMITED 09 February 2016 18 August 2016
Substituted dihydropteridin-6-one derivatives, process for their preparation and their use as kinase inhibitors NERVIANO MEDICAL SCIENCES S.R.L. 26 November 2008 03 December 2013
Novel A-500359 derivatives Sequella, Inc. 18 August 2000 19 March 2001
Imidazo(1,2-a)(pyrrolo, thiemo or furano)(3,2-d)azepine derivatives, compositions and methods of use JANSSEN PHARMACEUTICA N.V. 12 June 1992 13 December 1993
TETRACYKLISKA ANTIBIOTIKA OCH FOERFARANDE FOER FRAMSTAELLNING AV DESSA HOECHST AKTIENGESELLSCHAFT 27 May 1992 30 November 1992
Process for the purification of methylcobalamin INTERQUIM, S.A. 30 March 2017 11 January 2018
17-hydroxy-17-pentafluorethyl-estra-4,9(10)-dien-11-aryl derivatives, methods for the production thereof and use thereof for treating diseases BAYER INTELLECTUAL PROPERTY GMBH 07 July 2010 24 January 2018
Benzimidazoles derivatives and process for their preparation SYNTHELABO 20 July 1988 08 September 1993
[3,4-a:3,4c]carbazole compounds, a process for their preparation and pharmaceutical compositions containing them LES LABORATOIRES SERVIER 16 October 2003 29 September 2004
HIV integrase inhibitors TIBOTEC PHARMACEUTICALS LTD.,VERSCHUEREN, WIM, GASTON,DIERYNCK, INGE,SURLERAUX, DOMINIQUE,DAEYAERT, FREDERIK 27 April 2004 22 September 2005
Tricyclic fused pyridin-2-one derivatives and their use as BRD4 inhibitors JUBILANT BIOSYS LIMITED 08 September 2016 16 March 2017
Tricyclic heterocyclic compounds as phosphoinositide 3-kinase inhibitors KARUS THERAPEUTICS LTD 19 August 2016 23 February 2017
9-halo-2-prostaglandin derivatives, processes for the preparation thereof and use thereof as medicinal agents SCHERING AKTIENGESELLSCHAFT 21 December 1984 13 October 1987
Bis(benzylpyrrolidine) derivatives as dopamine agonists SYNTEX (U.S.A.) INC. 21 December 1990 31 March 1992
5-hydroxymethyl-oxazolidin-2-one derivatives ACTELION PHARMACEUTICALS LTD. 09 November 2007 08 February 2012
See all similar patents <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US10150776 Harringtonines salts crystalline 1 US10150776 Harringtonines salts crystalline 2 US10150776 Harringtonines salts crystalline 3