Great research starts with great data.

Learn More
More >
Patent Analysis of

Binaural hearing system and method

Updated Time 12 June 2019

Patent Registration Data

Publication Number

US9906874

Application Number

US14/433025

Application Date

04 October 2013

Publication Date

27 February 2018

Current Assignee

CIRRUS LOGIC, INC.

Original Assignee (Applicant)

WOLFSON DYNAMIC HEARING PTY LTD

International Classification

H04R25/00,H04R5/033,H04R1/10,H04R3/00,H04R5/04

Cooperative Classification

H04R25/552,H04R5/033,H04R1/1083,H04R3/005,H04R5/027

Inventor

SHILTON, ANTHONY JOHN

Patent Images

This patent contains figures and images illustrating the invention and its embodiment.

US9906874 Binaural hearing 1 US9906874 Binaural hearing 2 US9906874 Binaural hearing 3
See all images <>

Abstract

A system (202) for binaural signal processing. A first speaker (210) and a second speaker (220) are respectively mounted proximal to, and deliver respective first and second acoustic signals to, the left and right ears of a user. A first microphone (212) and a second microphone (222) are respectively mounted proximal to the left and right ears. A binaural processing device receives signals from the microphones and, based on the microphone signals, determines the first and second acoustic signals. The binaural processing device operates at a distance from both the left and right ears of the user. The speakers, microphones and the binaural processing device are connected by a signal network.

Read more

Claims

1. A system for binaural signal processing, the system comprising: a first speaker and a second speaker respectively configured to be mounted proximal to, and to deliver respective first and second acoustic signals to, left and right ears of a user; a first microphone and a second microphone respectively configured to be mounted proximal to the left and right ears of the user; and a binaural processing device for receiving signals from each of the first and second microphones and for defining each of the first and second acoustic signals based upon the signals from both of the first and second microphones, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, wherein the binaural processing device being operable when distal from the left and right ears of the user; wherein the first and second speakers, the first and second microphones and the binaural processing device are connected by a signal network configured to pass signals from the first and second microphones to the binaural processing device and from the binaural processing device to the speakers, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.

2. The system of claim 1, when configured to implement a hearing aid.

3. The system of claim 1, when configured to implement an assisted listening device (ALD) or personal sound amplifier product (PSAP).

4. The system of claim 1 wherein the single wire chained bus loop is connected to the binaural processing device by a 3.5 mm jack.

5. The system of claim 1 wherein the binaural processing device comprises one of: a mobile telephone, smart phone, tablet computer, and e-reader.

6. The system of claim 1 wherein more than one microphone is provided at one or both ears.

7. A system for binaural signal processing according to claim 1 included in a telephone headset.

8. A system for binaural signal processing according to claim 1 included in an audio playback device.

9. A system for binaural signal processing according to claim 1 included in an audio recording device.

10. A system for binaural signal processing, the system comprising: a first speaker and a second speaker respectively configured to be mounted proximal to, and to deliver respective first and second acoustic signals to, left and right ears of a user; a first microphone and a second microphone respectively configured to be mounted proximal to the left and right ears of the user; and a binaural processing device for receiving signals from each of the first and second microphones and for defining each of the first and second acoustic signals based upon the signals from both of the first and second microphones, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, wherein the binaural processing device being operable when distal from the left and right ears of the user; wherein the first and second speakers, the first and second microphones and the binaural processing device are connected by a signal network configured to pass signals from the first and second microphones to the binaural processing device and from the binaural processing device to the speakers, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.

11. The system of claim 10 wherein the binaural processing device operates as a network master and provides a master dock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.

12. The system of claim 10, when configured to implement a hearing aid.

13. The system of claim 10, when configured to implement an assisted listening device (ALD) or personal sound amplifier product (PSAP).

14. The system of claim 10 wherein the single wire chained bus loop is connected to the binaural processing device by a 3.5 mm jack.

15. The system of claim 10 wherein the binaural processing device comprises one of: a mobile telephone, smart phone, tablet computer, and e-reader.

16. The system of claim 10 wherein more than one microphone is provided at one or both ears.

17. A method for binaural signal processing, the method comprising: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of the user; a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, and wherein the binaural processing device being operable when distal from the left and right ears of the user; and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.

18. A non-transitory computer readable medium for binaural signal processing, comprising instructions which, when executed by one or more processors, causes performance of the following: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of the user; a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, and wherein the binaural processing device being operable when distal from the left and right ears of the user; and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.

19. A method for binaural signal processing, the method comprising: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of user; a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, whereby sound captured at both ears is used to produce the first output signal and sound captured at both ears is used to produce the second output signal, the binaural processing device being operable when distal from the left and right ears of the user; and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.

20. A non-transitory computer readable medium for binaural signal processing, comprising instructions which, when executed by one or more processors, causes performance of the following: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of user; a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, whereby sound captured at both ears is used to produce the first output signal and sound captured at both ears is used to produce the second output signal, the binaural processing device being operable when distal from the left and right ears of the user; and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.

Read more

Claim Tree

  • 1
    1. A system for binaural signal processing, the system comprising:
    • a first speaker and a second speaker respectively configured to be mounted proximal to, and to deliver respective first and second acoustic signals to, left and right ears of a user
    • a first microphone and a second microphone respectively configured to be mounted proximal to the left and right ears of the user
    • and a binaural processing device for receiving signals from each of the first and second microphones and for defining each of the first and second acoustic signals based upon the signals from both of the first and second microphones, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, wherein the binaural processing device being operable when distal from the left and right ears of the user
    • wherein the first and second speakers, the first and second microphones and the binaural processing device are connected by a signal network configured to pass signals from the first and second microphones to the binaural processing device and from the binaural processing device to the speakers, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.
    • 2. The system of claim 1, when configured to implement a hearing aid.
    • 3. The system of claim 1, when configured to implement an assisted listening device (ALD) or personal sound amplifier product (PSAP).
    • 4. The system of claim 1 wherein
      • the single wire chained bus loop is connected to the binaural processing device by a 3.5 mm jack.
    • 5. The system of claim 1 wherein
      • the binaural processing device comprises
    • 6. The system of claim 1 wherein
      • more than one microphone is provided at one or both ears.
    • 7. A system for binaural signal processing according to claim 1 included in a telephone headset.
    • 8. A system for binaural signal processing according to claim 1 included in an audio playback device.
    • 9. A system for binaural signal processing according to claim 1 included in an audio recording device.
  • 10
    10. A system for binaural signal processing, the system comprising:
    • a first speaker and a second speaker respectively configured to be mounted proximal to, and to deliver respective first and second acoustic signals to, left and right ears of a user
    • a first microphone and a second microphone respectively configured to be mounted proximal to the left and right ears of the user
    • and a binaural processing device for receiving signals from each of the first and second microphones and for defining each of the first and second acoustic signals based upon the signals from both of the first and second microphones, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, wherein the binaural processing device being operable when distal from the left and right ears of the user
    • wherein the first and second speakers, the first and second microphones and the binaural processing device are connected by a signal network configured to pass signals from the first and second microphones to the binaural processing device and from the binaural processing device to the speakers, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.
    • 11. The system of claim 10 wherein
      • the binaural processing device operates as a network master and provides a master dock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.
    • 12. The system of claim 10, when configured to implement a hearing aid.
    • 13. The system of claim 10, when configured to implement an assisted listening device (ALD) or personal sound amplifier product (PSAP).
    • 14. The system of claim 10 wherein
      • the single wire chained bus loop is connected to the binaural processing device by a 3.5 mm jack.
    • 15. The system of claim 10 wherein
      • the binaural processing device comprises
    • 16. The system of claim 10 wherein
      • more than one microphone is provided at one or both ears.
  • 17
    17. A method for binaural signal processing, the method comprising:
    • obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of the user
    • a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, and wherein the binaural processing device being operable when distal from the left and right ears of the user
    • and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.
  • 18
    18. A non-transitory computer readable medium for binaural signal processing, comprising
    • instructions which, when executed by one or more processors, causes performance of the following: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of the user
    • a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, wherein sound captured at both ears is used to produce the first acoustic signal and sound captured at both ears is used to produce the second acoustic signal, and wherein the binaural processing device being operable when distal from the left and right ears of the user
    • and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the binaural processing device operates as a network master and provides a master clock signal on the single wire chained bus loop for clock retrieval by other devices on the single wire chained bus loop.
  • 19
    19. A method for binaural signal processing, the method comprising:
    • obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of user
    • a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, whereby sound captured at both ears is used to produce the first output signal and sound captured at both ears is used to produce the second output signal, the binaural processing device being operable when distal from the left and right ears of the user
    • and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.
  • 20
    20. A non-transitory computer readable medium for binaural signal processing, comprising
    • instructions which, when executed by one or more processors, causes performance of the following: obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of user
    • a binaural processing device receiving each of the first and second microphone signals via a signal network and, based upon both of the first and second microphone signals, producing first and second output signals, whereby sound captured at both ears is used to produce the first output signal and sound captured at both ears is used to produce the second output signal, the binaural processing device being operable when distal from the left and right ears of the user
    • and a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user, wherein the signal network comprises a single wire chained bus loop having a chained configuration in which data from upstream on the single wire chained bus loop is recovered by each of the first and second speakers and the first and second microphones and re-modulated downstream onto the single wire chained bus loop, wherein the first and second speakers are positioned downstream of the binaural processing device on the single wire chained bus loop, and the first and second microphones are positioned downstream of the first and second speakers on the single wire chained bus loop, and wherein the signal network supports multiple data channels to permit multiple devices to be sending or receiving simultaneously.
See all independent claims <>

Description

TECHNICAL FIELD

The present invention relates to the digital processing of signals from microphones or other such transducers, and in particular relates to a system and method for signal processing for a binaural hearing system such as binaural hearing aids.

BACKGROUND OF THE INVENTION

Binaural hearing systems delivering two separate acoustic signals, one to each ear of a user, generally provide better performance than monaural systems in which a single acoustic signal is delivered to a single ear, in terms of sound clarity, perceived dynamic range, speech perception and a “natural” sound. Binaural systems can achieve a stereo effect. Further, for users with hearing loss each acoustic signal produced by a binaural system can be uniquely customised to best meet the needs of the ear to which it is being delivered, as typically defined by an audiogram. Additionally, each acoustic signal produced by a binaural system can generally be set at a lower volume than is required for a monaural system, putting less stress on the user's hearing.

FIG. 1 shows a typical binaural system, comprising two hearing aids 102, 104, one on each ear of the user. Stereo hearing aid functionality is achieved by ear level microphones and speakers. In simple form the DSP processing at each ear is independent. For best performance binaural systems should not simply comprise two monaural devices operating independently for each ear. Rather, it is desirable for each acoustic signal produced by a binaural system for one ear to be created by processing which also takes into account factors affecting or derived from the other ear, such processing being referred to herein as “integrated” binaural processing. However, to effect such integrated binaural signal processing requires significantly greater complexity and for example requires substantially continuous collection of signal and environment parameters at both ears, for integrated processing by a single processor which can be mounted in either device, or one such processor in each device.

Devices having a speaker at each ear, but which do not gather microphone information at each ear, also suffer a number of disadvantages. For example, conventional telephony headsets can have speakers at each ear, a boom-mounted or wire-mounted microphone near the user's mouth, cheek, or larynx, and a wired or wireless connection from the headset to a controlling device which can be a mobile telephone, desktop computer, or desktop telephone base. The microphone signal can be analysed by the controlling device to implement a range of signal processing techniques such as noise reduction, however with the microphone distal from the ear such devices can not provide effective hearing aid performance as they provide a mono channel and give no directional cues. Moreover integrated binaural processing can not be effected with only a single microphone. Similarly, audio playback devices such as MP3 players and the like can deliver two separate acoustic signals to the respective ears of the user for example to provide a stereo effect, but these devices do not provide a microphone at or proximal to each ear in order that the acoustic signal for each ear can be produced in a manner which takes into account factors affecting or derived from that ear and from the other ear and thus do not provide integrated binaural signal processing.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

SUMMARY OF THE INVENTION

According to a first aspect the present invention provides a system for binaural signal processing, the system comprising:

a first speaker and a second speaker respectively configured to be mounted proximal to, and to deliver respective first and second acoustic signals to, the left and right ears of a user;

a first microphone and a second microphone respectively configured to be mounted proximal to the left and right ears of a user; and

a binaural processing device for receiving signals from the first and second microphones and for defining the first and second acoustic signals based upon the signals from the first and second microphones, the binaural processing device being operable when distal from the left and right ears of the user;

wherein the first and second speakers, the first and second microphones and the binaural processing device are connected by a signal network configured to pass signals from the first and second microphones to the binaural processing device and from the binaural processing device to the speakers.

According to a second aspect the present invention provides a method for binaural signal processing, the method comprising:

obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of a user;

a binaural processing device receiving the first and second microphone signals via a signal network and, based upon the first and second microphone signals, producing first and second output signals, the binaural processing device being operable when distal from the left and right ears of the user; and

a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user.

According to another aspect the present invention provides a computer program product comprising computer program code means to make a computer execute a procedure for binaural signal processing, the computer program product comprising computer program code means for carrying out the method of the second aspect.

A non-transitory computer readable medium for binaural signal processing, comprising instructions which, when executed by one or more processors, causes performance of the following:

obtaining a first microphone signal from a first microphone mounted proximal to a left ear of a user, and obtaining a second microphone signal from a second microphone mounted proximal to a right ear of a user;

a binaural processing device receiving the first and second microphone signals via a signal network and, based upon the first and second microphone signals, producing first and second output signals, the binaural processing device being operable when distal from the left and right ears of the user; and

a first speaker and a second speaker, respectively mounted proximal to the left and right ears of the user, respectively receiving the first and second output signals from the binaural processing device via the signal network and delivering respective first and second acoustic signals to the left and right ears of the user.

In embodiments of the invention the binaural signal processing may be configured to implement a hearing aid. Additionally or alternatively, the binaural signal processing may be configured to implement an assisted listening device (ALD) or personal sound amplifier product (PSAP). Additionally or alternatively, the binaural signal processing may be configured to implement a binaural telephony headset, audio playback function, or audio recording function.

The signal network connecting the first and second speakers, the first and second microphones and the binaural processing device preferably comprises a single wire bus. Such embodiments may be particularly beneficial in allowing implementation of the present invention by use of already-common consumer headphone wires. For example, a smart phone executing a suitable app or application could connect to a suitable headset through an industry standard 3.5 mm jack and implement such embodiments of the present invention.

The first and second speakers, the first and second microphones and the binaural processing device are preferably chained together along the single wire bus to complete the signal network. The binaural processing device preferably operates as a network master and provides a master clock signal on the bus for clock retrieval by other devices on the bus. The signal network preferably supports multiple channels to permit multiple devices to be sending or receiving simultaneously, such as time-division multiplexed channels. Preferably, the clock signal and signal data are embedded into a single symbol stream on the bus.

In preferred embodiments the first and second speakers are positioned downstream of the bus master in the network chain, and the first and second microphones are positioned downstream of the first and second speakers in the network chain. In such embodiments, data slots used to send the first and second output signals from the binaural processing device to the first and second speakers will subsequently become available for use by the first and second microphones to send the first and second microphone signals to the binaural processing device. However, alternative chaining order may be provided in alternative embodiments.

The telephony headset may comprise an over-the-head cradle for supporting ear cups, over-the-ear moulds for mounting the speakers, or may comprise unsupported ear buds.

The binaural processing device may comprise a mobile telephone, smart phone, tablet computer, or e-reader, for example.

The first and second microphones, and the first and second speakers, are preferably mounted upon a headset. The headset may have a wired connection to the binaural processing device or may utilise a wireless connection. The connection between the headset and the binaural processing device is preferably low latency for improved system performance.

In some embodiments more than one microphone is provided at one or both ears.

The microphones may be positioned external to or internal to the ear canal.

In some embodiments, sound captured by the microphone at one ear is used exclusively to determine the acoustic signal to be delivered to that ear, to effectively implement two independent hearing aids, one at each ear. Alternatively, sound captured at both ears may be used to produce the acoustic signal to be delivered to each ear, to thereby binaurally integrate the two hearing aids.

BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with reference to the accompanying drawings, in which:

FIG. 1 shows a typical prior binaural system;

FIG. 2 illustrates a system for integrated binaural signal processing in accordance with one embodiment of the invention;

FIG. 3 illustrates the chained single wire signal network in the system of FIG. 2; and

FIG. 4 illustrates the DSP processing within the smart phone.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 2 illustrates a system for integrated binaural signal processing in accordance with one embodiment of the invention. A binaural processing device 202 is chained in a single wire signal network with two speakers 210, 220 and two microphones 212, 222. The speakers and microphones are arranged as a wired headset so as to position one speaker and one microphone proximal to a user's ear when in use. More microphones may also be provided (e.g. 230, 232, 234) for example to capture the user's voice or at other positions to capture additional signals. Additional microphones located on the earpieces may be located external to or internal to the ear canal. The microphones' signals are passed to the processor 240 via the signal network (FIG. 3). The standard 3.5 mm jack (250) and headset wire carries data from between 2 and 6 microphones (212, 222, 230, 232, 234 etc), along with power for the speakers and microphones as required, and an electrical ground reference.

The signal network bus is shown in FIG. 3. Low latency on the bus is important for total processing delay and for feedback cancellation.

Binaural processing is performed in the binaural processing device, which in this embodiment is a mobile handset. Alternative embodiments may utilise a tablet computer or e-reader for this function.

In this embodiment, the binaural processing is configured to effect binaural hearing aid processing. That is, signals captured from the vicinity of the user's ears are processed and amplified in accordance with a user-specific program and then delivered via the binaural speakers 210, 220, giving stereo effects and directional cues. Moreover, the hearing aid processing performed in the mobile handset is configurable, and in this embodiment is under the control of apps running on the processor 240 of the mobile device. The apps are arranged to implement the user-specific program and to receive user input via the mobile device to allow the program to be updated when required.

Appropriate amplification and/or processing is also applied to music playback and telephony provided by the processor 240 of the mobile device, in accordance with the program executed by the app.

As shown in FIG. 4, audio signal processing is performed in phone DSP 240. DSP 240 can implement standard hearing aid processing functions for both ears, such as directional microphones (with 2 mics per ear), feedback cancellation, noise reduction and compression. Hearing aid processing can, selectively, be applied during telephone calls and audio playback from the smart phone.

In this embodiment, a second mode can be provided by the device, whereby the mobile device itself carries at least one microphone 234, and the user can hold the mobile device close to a sound source of interest, for example by the user holding the mobile device out towards a person with whom they are speaking. In such embodiments the signal from the mobile device microphone 234 is processed by the binaural processing device and delivered to the user in a binaural manner.

In this embodiment, a third mode is also provided. In this third mode an external microphone (not shown), such as the microphone on another mobile device or an accessory microphone, is used and delivers an external microphone signal to the binaural processing device as part of the binaural processing to be performed.

A fourth mode of operation is to provide ambient noise cancellation via speakers 210, 220, based on detected noise signals obtained at each ear by mics 212, 222. Location of the mics 212, 222 at ear level is particularly advantageous for ambient noise cancellation.

Shifting the audio processing to a smart phone also permits a sophisticated user interface to be presented to the user, as opposed to simple toggle switches and the like which are all that can be typically provided on ear-mounted devices.

The second through fourth modes of operation can be entered into voluntarily, by the user inputting commands into the mobile device. Preferably, signal delay is kept to a minimum for feedback cancellation and to avoid negative occlusion effects.

The present embodiment of the invention uses a single wire chained bus and pulse length modulation scheme in order to interface the headset mounted microphones 212, 222 and speakers 210, 220, and the hearing aid processor 240. Due to the chained configuration, data must be recovered by each device and then re-modulated onto the bus by the same device. This requires one symbol period to achieve and therefore introduces bus latency of one symbol period per device on the bus. Data consuming devices (speakers 210, 220) should therefore desirably be first on the bus and data generating devices (microphones 212, 222) last on the bus. A wireless signal network may be suitable in alternative embodiments.

Notably, sound is captured binaurally at ear level and then processed in the mobile device processor 240. This is key to permit hearing aid performance, rather than low performance if distal microphones are used. Additionally, this enables in some embodiments the application of suitable algorithms that combine information from both ears to enhance the signal processing and/or deliver binaural integration.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Read more
PatSnap Solutions

Great research starts with great data.

Use the most comprehensive innovation intelligence platform to maximise ROI on research.

Learn More

Patent Valuation

$

Reveal the value <>

30.0/100 Score

Market Attractiveness

It shows from an IP point of view how many competitors are active and innovations are made in the different technical fields of the company. On a company level, the market attractiveness is often also an indicator of how diversified a company is. Here we look into the commercial relevance of the market.

61.0/100 Score

Market Coverage

It shows the sizes of the market that is covered with the IP and in how many countries the IP guarantees protection. It reflects a market size that is potentially addressable with the invented technology/formulation with a legal protection which also includes a freedom to operate. Here we look into the size of the impacted market.

71.83/100 Score

Technology Quality

It shows the degree of innovation that can be derived from a company’s IP. Here we look into ease of detection, ability to design around and significance of the patented feature to the product/service.

45.0/100 Score

Assignee Score

It takes the R&D behavior of the company itself into account that results in IP. During the invention phase, larger companies are considered to assign a higher R&D budget on a certain technology field, these companies have a better influence on their market, on what is marketable and what might lead to a standard.

20.96/100 Score

Legal Score

It shows the legal strength of IP in terms of its degree of protecting effect. Here we look into claim scope, claim breadth, claim quality, stability and priority.

Citation

Patents Cited in This Cited by
Title Current Assignee Application Date Publication Date
Social network for sharing a hearing aid setting APPLE INC. 19 January 2011 19 July 2012
Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation QUALCOMM INCORPORATED 21 February 2012 23 August 2012
Providing notification sounds in a customizable manner APPLE INC. 17 February 2011 23 August 2012
Method of rendering binaural stereo in a hearing aid system and a hearing aid system WIDEX A/S 08 April 2011 04 August 2011
Digital system bus for use in low power instruments such as hearing aids and listening devices SONION NEDERLAND B.V. 03 October 2003 17 June 2004
Title Current Assignee Application Date Publication Date
Binaural hearing system and method CIRRUS LOGIC, INC. 13 December 2017 12 April 2018
Binaural hearing system and method CIRRUS LOGIC, INC. 13 December 2017 01 January 2019
See full citation <>

More like this

Title Current Assignee Application Date Publication Date
Audio signal processing method and device HITACHI, LTD. 09 October 2015 13 April 2017
Sound filtering system HAEBORA CO., LTD. 18 May 2016 16 February 2017
Sound capture for mobile devices DOLBY LABORATORIES LICENSING CORPORATION 16 February 2017 24 August 2017
Acoustic transducer device with adjustment of individual caracteristic of hearing GRUNDIG MULTIMEDIA B.V. 15 January 2002 24 July 2002
Action sound capture using subsurface microphones DOLBY LABORATORIES LICENSING CORPORATION,DOLBY INTERNATIONAL AB 08 April 2016 13 October 2016
Hearing assistance system ADVANCED BIONICS AG 11 May 2015 17 November 2016
Synchronising an audio signal POWERCHORD GROUP LIMITED 14 July 2016 19 January 2017
Method and system for transmission path noise control AMS AG 25 January 2017 03 August 2017
Hearing aid comprising an array of microphones VARIBEL B.V. 20 October 1998 28 November 2007
Audio signal processing device and method for reproducing a binaural signal HUAWEI TECHNOLOGIES CO., LTD.,HELWANI, KARIM,GROSCHE, PETER,LANG, YUE 13 November 2014 19 May 2016
Binaural hearing assistance operation BOSE CORPORATION 03 January 2017 13 July 2017
Systems and methods for facilitating interaural level difference perception by preserving the interaural level difference ADVANCED BIONICS AG,CHEN, CHEN,SWAN, DEAN,LITVAK, LEONID M. 14 July 2017 01 March 2018
Device for generating audio output QUALCOMM INCORPORATED 18 May 2016 23 November 2017
Apparatus, system and method for reducing acoustic feedback interference signals EARGO, INC.,HERSCHER, BRET,UNNO, TAKAHIRO,SHEN, DANIEL,MICHEL, FLORENT 08 December 2016 15 June 2017
Hearing aid GN RESOUND A/S 14 December 2016 22 June 2017
Combined audio for multiple content presentation OPENTV, INC. 02 December 2016 08 June 2017
Binaural hearing aid system SIVANTOS PTE. LTD.,NIKLES, PETER,REITHINGER, JÜRGEN,KAMKAR-PARSI, HOMAYOUN,FISCHER, EGHART 10 March 2016 22 September 2016
Hearing assistance system SONOVA AG 07 April 2016 12 October 2017
See all similar patents <>

More Patents & Intellectual Property

PatSnap Solutions

PatSnap solutions are used by R&D teams, legal and IP professionals, those in business intelligence and strategic planning roles and by research staff at academic institutions globally.

PatSnap Solutions
Search & Analyze
The widest range of IP search tools makes getting the right answers and asking the right questions easier than ever. One click analysis extracts meaningful information on competitors and technology trends from IP data.
Business Intelligence
Gain powerful insights into future technology changes, market shifts and competitor strategies.
Workflow
Manage IP-related processes across multiple teams and departments with integrated collaboration and workflow tools.
Contact Sales
Clsoe
US9906874 Binaural hearing 1 US9906874 Binaural hearing 2 US9906874 Binaural hearing 3